Cl 162	$S C$	162.9.3	P140	L8

Ran, Adee

Intel

Comment Type T Comment Status A

$c(n) \max$
The maximum step size for $\mathrm{c}(1)$ is 0.05 , while for all other coefficient it is 0.02 .
Having a larger size for $c(1)$ than for $c(0)$ in the transmitter can create unexpected complexities to an optimization algorithm in the receiver (which has no way to tell if the sizes are equal or not). Training algorithms can be made simpler if the steps are nominally equal for all coefficients, so that decrements/increments in c(1) have the same effect on signal swing as other coefficients.

From the transmitter's point of view, there is little benefit, if at all, from having c(1) with a larger step size than all others.

Note that this commend is specific to the Tx electrical specifications. The COM search grid does not necessarily have to change (especially since c(1) is usually set to 0 in COM).

A presentation with further explanations is planned

SuggestedRemedy

Change step size limits for $\mathrm{c}(1)$ to align with all other coefficients.
Add a recommendation that implementations should have the same nominal step size for all coefficients, with editorial license.
Response
Response Status \mathbf{C}

ACCEPT IN PRINCIPLE.
The commenter requested that this comment be considered for Clause 163 and Annex 120 F , as well.

The relevant locations are 162.9.3, page 147, line 8, 163.9.1, page 176 , line 6 , and 120F.3.1, page 203, line 33.

Implement with editorial license.
Based on straw polls \#1 and \#2 do the following:
Change the TX tap maximum step size for TX characteristics to 0.025 for Clause 162, Clause 163, Annex 120F.

Add proposed recommendation with editorial license.
Straw poll \#1
I support changing the maximum step size for all TX taps to 0.025 for Clause 162, Clause
163, and Annex 120F for transmitter characteristics (not COM).
A: Yes -- 22
B: No -- 11

Straw poll \#2
I support adding the recommendation in the suggested remedy for comment \#62.
Yes: 14
No: 13
Straw poll \#3
I support closing comment \#62 using the direction given by Straw Poll \#1 and Straw Poll \#2. Yes: 18
No: 13

$C l$			
Cl	162.9.3	P140	$L 10$
Intel	\# 63		

Intel
Comment Type T Comment Status A
c (n) max
The maximum step size of 2% for a PAM4 equalizer creates a significant increase in complexity for a DAC-based transmitter implementation, compared to the step size required in the 802.3 cd specs.

A PAM4 DAC with the 2.5% specification in 802.3 cd is required to be able of outputting $6 / 0.025=240$ possible values, while with a 2% step size it is requires $6 / 0.02=300$ possible values. This means an additional bit should be used in the logic implementing the FFE and DAC control, and the analog circuits should enable more combinations.

The estimated cost in power consumption of the FFE+DAC logic and analog circuits from this small change in resolution, with a non-naive design, is about $0.3-0.4 \mathrm{pJ} / \mathrm{bit}$. This additional power is going to be consumed regardless of the channel in question.

As presented in ran_3ck_adhoc_01_021920, COM sensitivity analysis shows the benefit from this finer resolution is negligible. It is expected that real life performance will also have little dependence on the step size. Therefore, requiring a smaller maximum step than $2 / 5 \%$ will just waste power.

SuggestedRemedy

Change the (max.) values for $c(-3), c(-2), c(-1)$, and $c(0)$ to 0.025 .
Response
Response Status C
ACCEPT IN PRINCIPLE.
See response to comment \#62

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

IEEE P802.3ck D1.1 100/200/400 Gb/s Electrical Interfaces Task Force 2nd Task Force review comments

Cl 163 SC	SC 163.10	P181	L29	\# 155
Li, Mike		Intel		
Comment Type	TR	Comment Status R		transition time

SuggestedRemedy
Change it to $\mathrm{Tr}=6.5 \mathrm{ps}$, which is consistent with CEI-112G-PAM4-LR
Response Response Status C

REJECT.
See response to comment \#67
Cl 162 SC 162.11.7 \quad P160

Mellitz, Richard Samtec
Comment Type TR Comment Status R
[Comment resubmitted from Draft 1.0. Subcl. 162.11.7-Pg 152 - In 33]
To move forwards a value for SNR_Tx needs to be chosen

SuggestedRemedy

Replace TBD with 32 dB as in slide 8 of mellitz_3ck_03_1119, slide 9 of lim_3ck_01_1119
in Table 162-15.
Response Response Status \mathbf{C}

REJECT.

The task force reviewed slide 8 of
http://www.ieee802.org/3/ck/public/19_11/mellitz_3ck_03a_1119.pdf
and slide 9 of
http://www.ieee802.org/3/ck/public/19 11/lim 3ck 01a 1119.pdf
Based on the results of strawpolls \#5 and \#6 there is no consensus to make a change.
Straw poll \#5
I support closing comment \#10014 and \#64 using SNR_TX = 32 dB :
Yes: 18
No: 18
Straw poll \#6
I support closing comment \#10014 and \#64 using SNR_TX = 32 dB and COM $=2.5 \mathrm{~dB}$:
Yes: 6
No: 36

