Clause 163, 120F Comment Resolution

Phil Sun

Credo Semiconductor

Comments to be Discussed

Category	Comment ID	Notes
Test fixture	64, 227, [<u>65</u>, 161]	Done
Vf/vpeak/erl	<u>[13, 5], [61, 83, 84]</u>	Done
RITT Np	[279, <u>li 3ck 01 1020.pdf], [280</u> , 86]	For CL163, Annex 120F
RITT	[<u>71</u> , 166, 194], 2, [<u>70</u> ran_3ck_03_1020, 231], 168	
SNDR	226	
Example Test Fixture	228, 140, [<u>73</u> , 6], [<u>229</u> , 136, 26, 162, 204], 137	

RITT Np for CL163 Comment # 279

C/ 163	SC 163.9.3.3	P 1	82	L 3	# 279
Li, Mike		Intel			
Comment Np TB	<i>Type</i> TR D	Comment Status	D		RITT
S <i>uggested</i> Np = 2	Remedy 29, see li_3ck_01	_0920			
Proposed I PROP	Response OSED ACCEPT	Response Status IN PRINCIPLE.	w		
[Editor The re https:// Implen	's note: Addresse ferenced present /www.ieee802.org nent the suggest	es incomplete specif ation is located here g/3/ck/public/20_10/ ed remedy.	fication.] e: li_3ck_01_1	020.pdf	

Notes: this is Np for RITT

Spec being commented:

For task force review.

e) For the calculation of test channel COM, the following parameters are based on values measured from the test transmitter. The parameter SNR_{TX} is set to the measured value of SNDR with Np = TBD, the parameter R_{LM} is set to the measured value of R_{LM} , and the parameters A_{DD} and σ_{RJ} are calculated from the measured values of J3u and J_{RMS} using Equation (163–2) and Equation (163–3) respectively, where Q3 is 3.2905.

RITT Np for 120F Comment [<u># 280</u>, #86]

C/ 120F	SC 120F.3.2.3	P 2	13	L 1	# 280
Li, Mike		Intel			
Comment 7 Np TBI	Type TR D	Comment Status	D		RITT
Suggested/ Np = 1	Re <i>medy</i> 1, see li_3ck_01_	0920			
Proposed F PROPC	Response DSED ACCEPT II	Response Status N PRINCIPLE.	w		
[Editor' The ref https:// Implem For tas	s note: Addresses erenced presenta www.ieee802.org, nent the suggeste k force review.	s incomplete specifi tion is here: /3/ck/public/20_10/I d remedy.	ication.] i_3ck_01_1()20.pdf	

C/ 120F	SC 120F.3.2.3	P 2	13	L 1	# 86	
Brown, Ma	itt	Huav	vei			
Comment	Туре Т	Comment Status	D			RITT
For the consid	e SNDR measurer erations the value	nent in item e) of re for N_p is not set.	eceiver interfe	rence tolerance t	est	
Suggested	Remedy					
Replac	e TBD with an ap	propriate value.				
Proposed I	Response	Response Status	w			
PROP	OSED REJECT.					
[Editor	's note: Addresses	s incomplete specif	ication 1			
The su	iggested remedy of	loes not give an ac	tionable prop	osal.		
Resolv	e using the respo	nse to comment #2	80.			

Notes: this is Np for RITT

Spec being commented:

e) For the calculation of test channel COM, the following parameters are based on values measured from the test transmitter. The parameter SNR_{TX} is set to the measured value of SNDR with Np=TBD, the parameter R_{LM} is set to the measured value of R_{LM}, and the parameters A_{DD} and σ_{RJ} are calculated from the measured values of J4u and J_{RMS} using Equation (120D-10), and Equation (120D-11), respectively.

RITT Channel ERL Comment [#71, #166, #194]

CI 163	SC 163.9.3.3	P 181	L 42	# 71
Ran, Adee		Intel		
Comment Ty	vpe T	Comment Status D		RITT

In item b, Equation 163-2 is a calculation of A DD, not related to return loss.

The transmitter's test fixture only has an ERL spec, and that is defined from TP0v towards the DUT. It is not an appropriate ERL for TP5 replica (e.g. has only N=20 UI).

The breakout from the package is typically controlled by the PMD's vendor and is practically part of the DUT. Therefore we should not add ERL specifications for the TP5 replica - they may be irrelevant and even incorrect for a specific implementation.

This is similar to the case of a transmitter's test fixture where ERL is specified toward the DUT, but not from the DUT toward TP0v.

Instead, the test channel's ERL should be specified to meet the ERL specifications in 163.10.3.

Also applies in 120F.3.2.3 item b which has "The return loss of the test setup in Figure 93C-4 measured at TP5 replica towards TPt meets the return loss specifications in 163.9.2.1" - but there are no return loss specifications in 163.9.2.1 anymore.

SuggestedRemedy

Replace item b with the following:

The return loss of the test channel measured at TP5a towards TPt meets the requirements in 163.10.3.

Apply similar change in 120F.3.2.3 with the reference to requirements in 120F.4.3 instead.

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE.

Replace item b with "The return loss of the test channel measured at TP5a towards TPt meets the requirements in 163,10,3." CC: 163, 120F

Spec being commented:

The return loss of the test setup in Figure 93C-4 measured at TP5 replica towards TPt meets the b) requirements of Equation (163-2).

References:

163.10.3 Channel ERL

ERL of the channel at TP0 and at TP5 are computed using the procedure in 93A.5 with the values in Table 163-12. Parameters that do not appear in Table 163-12 take values from Table 163-11.

Channel ERL at TP0 and at TP5 shall be greater than or equal to TBD dB.

Figure 93C-4—Interference tolerance channel s-parameter test setup

RITT Channel ERL Comment [<u>#71</u>, #166, #194] Contd.

					CI
C/ 163	SC 163.9.3.3	P 181	L 42	# 166	Wu
Dudek, N	like	Marvell.			
Comment	tType TR	Comment Status D		RITT	Cor
Equa parar	tion 163-2 is nothin neter.	g to do with return loss. A	lso it would be be	tter to use ERLas the	
Suggeste	dRemedy				Suc
Chan	ge to "The ERL of t	he test setup in Figure 930	C–4 measured at	TP5 replica towards	0.03
requi	neets the rements for ERL in	163.9.2.1.2 with the exce	ption that the leng	th of the reflection	
signa	1 N IS 3000 01	-			Pro
Proposed	Response	Response Status W			
PRO	POSED ACCEPT II	N PRINCIPLE.			
Reso	lve using the respo	nse to comment #71			

Resolve using response to comment #71

	C/ 163 SC 163.9	.3.3 <i>P</i> 181	L 42	# 194	
	Wu, Mau-Lin	MediaTek			
RITT	Comment Type T	Comment Status D			RITT
the	The reference equa (equation 163-2) in	ation, Equation (163-2), is not co D1p2 and be removed from D1p	rrect. It shall be t o3.	he original equation	1
	SuggestedRemedy				
15	Copy Equation 163 location & correct t	-2 in D1p2 & related description ne referred Equation ID.	to D1p3. Put the	m in the appropriate	Э
	Proposed Response	Response Status 🛛 🛛 🛛 🛛 🛛 🖉			
	PROPOSED ACCE	PT IN PRINCIPLE.			
	Resolve using the r	esponse to comment #71			

RITT RSS_DFE4 Comment #2

C/ 120F SC 120F.3.2.3 P 213 L 31 # 12 Mellitz, Richard Samtec Comment Type TR Comment Status D RITT DFE4_RSS > 0.05 may be difficult to achieve with test equipment. The published C2C have a DFE4_RSS range between 0.03 V and 0.065 with a mean of 0.047. SuggestedRemedy Since these represent design expectation set DFE4_RSS to 0.03 which would be achievable in test setups. Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Implement the suggested remedy. For task force discussion.

Spec being commented:

Table 120F–5—Receiver interference tolerance parameters

Pavameter	Test 1 (low loss)		Test 2 (high loss)			Unite	
r al ameter	Min	Max	Target	Min	Max	Target	Units
FEC Symbol error ratio ^a	—	10 ⁻⁴	—	—	10 ⁻⁴	—	—
Insertion loss at 26.5625 GHz ^b	9.5	10.5	—	19.5	20.5	—	dB
RSS_DFE4 ^c	0.05			0.05	-	—	_
COM including effects of broadband noise ^d			3	—		3	dB
	Parameter FEC Symbol error ratio ^a Insertion loss at 26.5625 GHz ^b RSS_DFE4 ^c COM including effects of broadband noise ^d	Parameter Te Min Min FEC Symbol error ratio ^a — Insertion loss at 26.5625 GHz ^b 9.5 RSS DFE4 ^c 0.05 COM including effects of broadband noise ^d —	Test 1 (low low Parameter Min Max FEC Symbol error ratio ^a — 10 ⁻⁴ Insertion loss at 26.5625 GHz ^b 9.5 10.5 RSS DFE4 ^c 0.05 — COM including effects of broadband noise ^d — —	Test 1 (low loss)ParameterMinMaxTargetFEC Symbol error ratioa10 ⁻⁴ Insertion loss at 26.5625 GHzb9.510.5RSS DFE4c0.05COM including effects of broadband noised3	Test 1 (low lossTestParameterMinMaxTargetMinFEC Symbol error ratioa $$ 10^{-4} $$ $$ Insertion loss at 26.5625 GHzb9.5 10.5 $$ 19.5RSS DFE4c 0.05 $$ 0.05 $$ 0.05 COM including effects of broadband noised $$ $$ 3 $$	T=T (low low Test 2 (high low Min Max Target Min Max FEC Symbol error ratio ^a $$ 10^{-4} $$ 10^{-4} Insertion loss at 26.5625 GHz ^b 9.5 10.5 $$ 19.5 20.5 RSS DFE4 ^c 0.05 $$ 3 $$ $$	T=T (low $>>$ Test 2 (high $>>$ Parameter Min Max Target Min Max Target FEC Symbol error ratio ^a $$ 10^{-4} $$ 10^{-4} $$ 10^{-4} $$ Insertion loss at 26.5625 GHz ^b 9.5 10.5 $$ 19.5 20.5 $$ RSS DFE4 ^c 0.05 $$ 3 $$ 3 $$ COM including effects of broadband noise ^d $$ 3 $$ 3 $$ 3

RITT JTOL TX Setup Comment [#70, #231]

C/ 163 SC	0 163.9.3.3
-----------	-------------

Ran, Adee

P 181 Intel # 70

Comment Type T Comment Status D

.....

L 34

RITT

The exception that "transmitter equalization is configured by management..." is taekn from the AUI-C2C (Annex 120D) which does not have a training protocol.

This clause is for the KR PMD that does have a training protocol defined, so this exception is out of place. The procedure in Annex 93C should be used as is.

SuggestedRemedy

Delete the sendence "with the exception that transmitter equalization is configured by management (see 120D.3.2.3) to the settings that provide the lowest FEC symbol error ratio".

Response Status W

Proposed Response

PROPOSED ACCEPT.

Spec being commented:

163.9.3.3 Receiver interference tolerance

Receiver interference tolerance is defined by the procedure in Annex 93C with the exception that transmitter equalization is configured by management (see 120D.3.2.3) to the settings that provide the lowest FEC symbol error ratio. The receiver on each lane shall meet the FEC symbol error ratio requirement with

163.9.3.4 Receiver jitter tolerance

Receiver jitter tolerance is verified for each pair of jitter frequency and peak-to-peak amplitude values listed in Table 162–15. The test setup shown in Figure 93–12, or its equivalent, is used. The test channel meets the insertion loss requirement for Test 2 in Table 163–10. The synthesizer frequency is set to the specified jitter frequency and the synthesizer output amplitude is adjusted until the specified peak-to-peak jitter amplitude for that frequency is measured at TPOv. The test procedure is the same as the one described in 120D.3.2.1, with the following exceptions:

C/ 163	SC 163.9.3.3	P 181	L 35	# 231
Dawe, Piers		Nvidia		
Comment Ty	pe T	Comment Status D		RITT

This isn't right: "transmitter equalization is configured by management (see 120D.3.2.3) to the settings that provide the lowest FEC symbol error ratio". It's the receiver's responsibility to choose an adequate transmitter equalization setting. Further, the transmitter could be a test instrument that doesn't do 802.3 management. What has 120D.3.2.3 got to do with it? Was this text copied from a C2C clause?

SuggestedRemedy

Correct the text. The transmitter equalization is what the receiver asks for after it's had a chance to train, or a default if it doesn't ask for anything in particular. Same for 163.9.3.4 Receiver jitter tolerance.

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE.

> Resolve the issue with 163.9.3.3 using the response to comment #70. For 163.9.3.4, insert an exception as follows: "a) The transmitter coefficients are set according to the procedure in 93C.2." For task force review.

References:

93C.2 Test method

The interference tolerance test is performed using the following method:

- 1) Set the channel noise source to zero.
- 2) Using the test setup in Figure 93C–2, initiate the training sequence, allow the training sequence to complete, and retain the resulting transmitter tap coefficients.

Updated Response for #231:

ACCEPT IN PRINCIPLE.

Resolve the issue with 163.9.3.3 using the response to comment #70. For the issue with 163.9.3.4, implement the changes highlighted in slide 5 of <u>https://www.ieee802.org/3/ck/public/20_10/ran_3ck_03_1020.pdf</u>. Implement with editorial license.

RITT Tr Parameter Comment #168

CI 163	SC 163.9.3.3	P 1	81	L 50	# <mark>1</mark> 68	
Dudek, Mil	ke	Marv	ell.			
Comment	Type TR	Comment Status	D			RITT
The re of the only va 12.5Gl	lationship betwee loss between TP0 alide for the loss o Hz.	n Tr of the transmitt and TP0v and the f the test fixture of f	er and Nyquist 1.4dB w	the Trm measure t frequency. The /ith a Nyquist free	ement will be a func e equation used wa quency of approx	s
Suggested	IRemedy					
Replac	ce the equation wi	th TBD.				
Proposed I PROP	Response OSED ACCEPT I	Response Status N PRINCIPLE.	w			

References:

The voltage transfer function for each signal path $H_{21}^{(k)}(f)$ (see 93A.1.3) is multiplied by a set of filter transfer functions to yield $H^{(k)}(f)$ as shown in Equation (93A–19).

$$H^{(k)}(f) = H_{ffe}(f)H_t(f)H_{21}^{(k)}(f)H_r(f)H_{ctf}(f)$$
(93A-19)

If the test transmitter presents a high-quality termination, e.g., it is a piece of test equipment, the transmitter device package model $S^{(tp)}$ is omitted from the calculation of $S_p^{(k)}$ and the filtered voltage transfer function $H^{(k)}(f)$ in 93A.1.4 includes the filter $H_t(f)$ defined by Equation (93A–46) where T_r is the 20% to 80% transition time (see 86A.5.3.3) of the signal as measured at TP0a.

$$H_t(f) = \exp(-2(\pi f T_r / 1.6832)^2)$$
(93A-46)

Spec being commented:

For task force review.

Add an editor's note stating that this equation should be revisited

d) In the calculation of COM, if the transmitter is a device with known S-parameters and transition time, these parameters should be used instead of the transmitter package model in 93A.1.2. If a calibrated instrument-grade transmitter is used, the transmitter device package model $S^{(p)}$ is omitted from Equation (93A-3) in the calculation of COM. The filtered voltage transfer function $H^{(k)}(f)$ calculated in Equation (93A-19) uses the filter $H_{f}(f)$ defined by Equation (93A-46), where T_{r} is calculated as $T_{r} = 1.09 \times T_{rm}$ -4.2 ps and T_{rm} is the measured 20% to 80% transition time of the signal at TP0v. T_{rm} is measured using the method in 120E.3.1.5. T_{rm} is measured with the transmitter equalizer turned off.

Note: T_r and T_rm are both defined as 20% to ^{80%} rise time at TP0a (TP0v).

SNDR Footnote Editorial Comment <u>#226</u>

CI 163	SC 163.9.2	P 1	77 L 12	# 226
Dawe, Piers		Nvidi	а	
Comment Ty	vpe E	Comment Status	D	SNDR
It's surpr the devia	ising that the or ation from 120D	ly definition of SND .3.1.6.)R is table footnote	c. The reader could miss
SuggestedR At least	e <i>medy</i> put 162.9.3.1.1	in the Reference co	Jumn with 120D.3.	1.6
Proposed Re PROPO	esponse SED REJECT.	Response Status	w	
Deviation	n from 120D.3.1	.6 is described in th	ne footnote c.	

Spec being commented:

Table 163–5—Summary of transmitter specifications at TP0v (continued)

Parameter	Reference	Value	Units
Transmitter waveform ^b			
abs step size for $c(-3)$, $c(-2)$, $c(-1)$, $c(0)$, and $c(1)$ (min)	162.9.3.1.4	0.005	_
abs step size for $c(-3)$, $c(-2)$, $c(-1)$, $c(0)$, and $c(1)$ (max)	162.9.3.1.4	0.025	—
value at minimum state for $c(-3)$ (max)	162.9.3.1.5	-0.06	_
value at maximum state for $c(-2)$ (min)	162.9.3.1.5	0.12	_
value at minimum state for $c(-1)$ (max)	162.9.3.1.5	-0.34	—
value at minimum state for $c(0)$ (max)	162.9.3.1.5	0.54	—
value at minimum state for $c(1)$ (max)	162.9.3.1.5	-0.2	—
Signal-to-noise-and-distortion ratio SNDR (min) ^c	120D.3.1.6	32.5	dB
Jitter (max) ^d			
J _{RMS}	162.9.3.3	0.023	UI
J3u	162.9.3.3	0.106	UI
Even-odd jitter, pk-pk ^e	162.9.3.3	0.019	UI

^aMeasurement uses the method described in 93.8.1.3 with the exception that the PRBS13Q test pattern is used. ^bImplementations are recommended to use the same step size for all coefficients

^cMeasurement uses the method described in 120D.3.1.6 with the exception that the linear fit procedure in 162.9.3.1.1 is used.

Note: 162.9.3.1.1 describes linear fitting procedure.

Test Fixture RL Frequency Range Comment #228

00 100.3.2.1.0	C/ 163	SC 163.9.2.1.3
----------------	--------	----------------

P 178 Nvidia

L 26

228

Dawe, Piers Comment Type

T Commen

Comment Status D

example TF

It doesn't make sense to have an RL spec for the test fixture only to 26.56 GHz, while the spec for the item under test extends to 40 GHz (see 162.9.3.5, referenced from Table 163-5: is that the right cross-reference?)

SuggestedRemedy

Provide a CM RL spec for the test fixture up to the same frequency as the product spec.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

Change referece in Table 163-5 from 162.9.3.5 to 163.9.2.1.3.

Change the text in 163.9.2.1.3 to "The common-mode to common-mode return loss shall be greater than or equal to 2 dB at all frequencies between 0.2 GHz and 40 GHz."

Spec being commented:

Common-mode to common-mode return loss (min)

162.9.3.5 2 dB

References:

163.9.2.1.3 Test fixture common-mode return loss

The common-mode return loss of the test fixture shall be greater than or equal to 10 dB from 0.05 GHz to 26.56 GHz.

TPOa Example Removal Comment #140]

C/ 120F SC 120.F.3.1

Ghiasi, Ali

P 208

Ghiasi Quantum/Inphi

L1

140

TP0v

References:

Comment Type **T** Comment Status **D** TP Until it is proven TP0v with real measurement the electrical characteristics should be at TP0a, there is no need create all this confusion and complexity by introducing TP0v when the solution is trivial just increase the DUT board loss to 2.4 dB as we have done for MCB and HCB!

SuggestedRemedy

Change TP0v to TP0a

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE.

Resolve using the response to comment #135. [Editor's note: CC: 120F, 163]

Straw Poll #1:

I support keeping TPOv methodology as the normative specification (choose one) Y: 27, N: 4, No Opinion: 11

Notes:

Pulled from the bucket.

Updated Response:

Reject

straw Poll #1 on 10/13 shows consensus to keep TPOv.

Resolve using response to comment #135

TPOa Example Removal Comment [<u>#73</u>, #6]

C/ 163	SC 163.9.2.2	? P 1	78	L 28	# 73	
Brown, Ma	att	Huav	vei			
Comment	Туре Т	Comment Status	D		example) TF
The ex preser https://	ample test fixtu Itation; /www.ieee802.o	e using TP0a is no lo g/3/ck/public/adhoc/s	onger re sept16 <u>.</u>	equired. See the fo _20/brown_3ck_adl	llowing ad hoc	df
Suggested	Remedy					
Remov KR (Cl	ve 163.9.2.2 and ause 163) and (l reference TP0v inste C2C (Annex 120F).	ead of	TP0a for all transm	itter specifications f	or
Proposed PROP	Response OSED ACCEPT	Response Status IN PRINCIPLE.	w			

Implement the suggested remedy. For task force discussion. [Editor's note: CC: 120F, 163]

Spec being commented:

163.9.2.2 Example transmitter test fixture (informative)

An example test fixture meeting the requirements for TP0v is defined in this subclause. In this example, the TP0v point is referred to as TP0a.

Cl 163	SC 163.9.2	. 2 P 17	78 L 29
Mellitz, Ri	chard	Samte	ec
Comment	Type TR	Comment Status	D
TP0a	is moot and rep	placed by TP0v	
Suggested remov	<i>Remedy</i> ve references to	o TP0a.	
Proposed PROF	Response POSED ACCEP	Response Status PT IN PRINCIPLE.	W
Respo	olve using the re	esponse to comment #	£73.

Straw Poll #2:

Assuming we keep TPOv methodology, I support removing the example test fixture in 163.9.2.2 Y: 10, N: 17, No Opinion: 13

example TF

Updated Response:

Straw Poll #2 on 10/13 shows consensus to keep the example test fixture.

Reject Comment #73 and #6

TPOa Example IL and Threshold [#<u>229</u>, #136, #26, #162, #204]

C/ 163	SC 163.9.2.2	

P 178 L 33

example TF

229

An example with a range is more complicated than it need be.

SuggestedRemedy

Comment Type T

Dawe, Piers

Pick a single example IL, e.g. 3.5 or 4 dB. Make this and the IL equation 163-3 consistent. Give the reference ERL, steady-state voltage and so on for the example.

Nvidia

Comment Status D

Proposed Response Response Status W

PROPOSED REJECT.

Comment #73 suggests to remove TP0a. Comment #135 suggests to increase TP0a IL to make it a measurable test point. TP0a with a single exact IL value is not implementable. For task force review.

Spec being commented:

The insertion loss of the test fixture is between 1.2 dB and 1.6 dB at 26.56 GHz. The magnitude of the insertion loss deviation of the test fixture is less than or equal to 0.1 dB from 0.05 to 26.56 GHz.

The insertion loss of the test fixture is defined by Equation (163-1).

 $IL(f) = 0.0037 + 0.1052\sqrt{f} + 0.0337f \qquad 0.05 \le f \le 53.125$ (163-1)

References:

Straw poll #3:

I support the test fixture TPO to TPOa insertion loss being A: a single value B: a range C: no opinion Results: A: 18, B: 6, C: 8

Straw poll #4:

For the example test fixture, I support TPO to TPOa insertion loss of: (Chicago rules) A: 0 dB B: between 0 and 2 dB C: 2 dB D: 2.5 dB E: 3 dB F: 3.5 dB G: 4 dB H: greater than 4 dB I: no opinion Results: A: 6, B: 4, C: 7, D: 13, E: 16, F: 10, G: 9, H: 1, I: 9

Updated Response for #229:

TPOa test fixture IL 2.8 dB?

Remove ILD?

IL equation and figure?

Give reference ERL, Vpeak, Vf instead of "the difference"? What are the values?

Apply the response to #136, #26, 162, #204

TPOa Example IL and Threshold [<u>#229</u>, #136, #26, #162, #204]

C/ 163	SC 163.9.2.2.	P 178	L 33	# 136	C/ 163	SC 1	63.9.2.2	P 178	L 33	# [162
Ghiasi, Ali		Ghiasi Quantu	m/Inphi		Dudek, Mik	e		Marvell.			
Comment T	Type TR ase the loss from	Comment Status D 1.2 dB and 1.6 dB		example TF	Comment 7	Type Sortion k	TR	Comment Status D	s un roalistically lo	w This ann	example TF
Sugaested	Remedy				Rx test	fixture	as well.	example test lixture is	s un-realistically lo	и. тпіз арр	nies to the
to 2.2 a =0.006	and 2.6 dB and up 2 + 0.1753*sqrt(f)	date equation 163-1 to +0.0561*f the equation nomi	inal loss is 2.4 dB		Suggested Change	Remedy e the los	/ ss to "betv	veen 2.4 and 3.2dB" ar	nd double the co-e	efficients in ea	uation 163-1
Proposed F PROP	Response OSED ACCEPT II	Response Status W N PRINCIPLE.			and ch figure a 181 line	ange Fig as well. e 19.	gure 163-4 Change	4 to match. Note that t the loss of the Rx test	the Rx test fixture fixture to "betwee	refers to this e n 2.4 and 3.20	∋quation and dB" on page
The fol	lowing TP0a IL ar	e proposed:			Proposed F	Respons	se	Response Status W	I		
Comm	ent #136: 2.2 - 2.6 ent #162: 2.4 - 3.2	∂dB 2 dB			PROP	OSED A	CCEPT I	N PRINCIPLE.			
Comm Comm Comm	ent #204: 2.0 - 2.8 ent #229: 3.5 or 4 ent #26 : 4 dB	dB dB			Resolv	e using	the respo	nse to comment #136.			
#73 pro	oposes to remove	TP0a example. Comment #	135 and #6 propos	e to change TP0a							
For tas	k force review.				C/ 163	SC 1	63.9.2.2	P 178	L 33	# 204	
					Wu, Mau-	Lin		MediaTek			
~				"	Comment	Type	Т (Comment Status D	ious la this same las	example Th	F
CI 163	SC 163.9.2.2	P 178	L 39	# 26	provid	le this kin	d of "examp	ble TX test fixture". Based o	on that, I proposed to r	end points to elax the IL and	
Ben-Artsi,	Liav	Marvell Sen	niconductor ltd.		ILD sj wu 3	pecs of th ck_adhoc	is example 01 092320	TX test fixture (TP0a). Deta 0.pdf. I plan to prepare one	ailed information had t contribution, wu 3ck	been included in 02 1120.pdf.	
Comment T	Туре Т	Comment Status D		example TF	for thi	s comme	nt.		, _		
The tra	insmitter and rec	iever test fixture informativ	e examples are irr	elevant, since they	Suggeste	dRemedy					
Suggestedi Recom	Remedy Imend changing	, equation 163.1 to IL(F) = 0	.01+0.292*sqrt(F)	+0.0936*F (F in GHz),	Chan dB at Remo exam	ge IL and 26.56 GH ove the Ec ple and in	ILD specs of Iz". ILD is le quation (163 iformative	of the example TX test fixtues ss than or equal to 0.2 dB i-1), Figure 163-4, and relat	ire (TP0a) to "betweer from 0.05 to 26.56 GH ted paragraphs since	I 2.0 dB and 2.8 Iz TP0a is just an	
which i 163.9.3	s more realistic a 3.2 on page 181	and meets 4dB of loss at 20 lines 22-24	6.5625GHz. It is a	lso refered to in	Proposed PROF	Respons POSED A	e R CCEPT IN I	Pesponse Status W PRINCIPLE.			
Proposed P	Response	Response Status W			This o	omemnt i	involves mu	ltiple suggested rededies.			
PROP	OSED ACCEPT	IN PRINCIPLE.			Resol Test f provic	ve IL cha ixture equ le sufficie	nge using th uation and fi ent justification	ne response to comment # gure have been in multiple on to remove them.	136. standards. This comr	nent does not	
Resolv	e using the respo	onse to #136.			Imple For ta	ment ILD isk force r	change. review.				

[Editor's note: Add presentation URL.]

TP5a Example IL [#<u>137</u>]

C/ 163	SC 163.9.3.2	2 <i>P</i> 1	81	L 18	# 137
Ghiasi, Ali		Ghias	i Quant	um/Inphi	
Comment	Type TR	Comment Status	D		RX test fixture
Inccrea	ase the loss fror	n 1.2 dB and 1.6 dB			
Suggested	Remedy				
to 2.2	and 2.6 dB				
Proposed I	Response	Response Status	w		
PROP	OSED ACCEPT	IN PRINCIPLE.			
Resolv	ve using the resp	oonse to comment #4	0		

Spec being commented:

163.9.3.2 Receiver test fixture

The insertion loss of the test fixture shall be between 1.2 dB and 1.6 dB at 26.56 GHz. The magnitude of the insertion loss deviation of the test fixture shall be less than or equal to 0.1 dB from 0.05 GHz to 26.56 GHz.

Updated Response for #137:

Resolve with response to comment #40 to align TPOv and TP5v spec.

Resolve with response to comment #229 for receiver test fixture IL spec.

Completed Comments

Test Fixture ILD Comment # 64

test fixture

References:

93A.4 Insertion loss deviation

46

47

48

The insertion loss deviation ILD(f) is the difference between the measured insertion loss IL(f) and the fitted insertion loss $IL_{fitted}(f)$ (see 93A.3) as shown in Equation (93A–55).

$$ILD(f) = IL(f) - IL_{fitted}(f)$$
(93A-55)

A figure of merit for a channel that is based on ILD(f) is given by Equation (93A–56). In Equation (93A– 56), f_n are the frequencies considered in the computation of the fitted insertion loss and $W(f_n)$ is the weight at each frequency as defined by Equation (93A–57).

$$FOM_{ILD} = \left[\frac{1}{N}\sum_{n} W(f_n) ILD^2(f_n)\right]^{1/2}$$
(93A-56)

$$W(f_n) = \operatorname{sinc}^2(f_n/f_b) \left[\frac{1}{1 + (f_n/f_t)^4} \right] \left[\frac{1}{1 + (f_n/f_r)^8} \right]$$
(93A-57)

The variable f_b is the signaling rate. The 3 dB transmit filter bandwidth f_t is inversely proportional to the 20% to 80% rise and fall time T_t . The constant of proportionality is 0.2365 (e.g., $T_t f_t = 0.2365$; with f_t in Hertz and T_t in seconds). The variable f_t is the 3 dB reference receiver bandwidth.

The values assigned to f_h , T_r , and f_r are defined by the Physical Layer specification that invokes this method.

The insertion loss of the test fixture shall be less than 5 dB at 26.56 GHz. The magnitude of the insertion loss deviation of the test fixture shall be less than or equal to 0.2 dB from 0.05 to 26.56 GHz.

Spec being commented:

163.9.2.1.1 Test fixture insertion loss

SC 163.9.2.1.1

C/ 163

Ran, Adee

Comment Type T

SuggestedRemedy

Proposed Response Response Status W PROPOSED ACCEPT.

and f b and f t values are taken from Table 163-11."

ILD definition in 93A.4 should be cross referenced.

P 177

This definition requires some parameters. Specifically the transition time Tt, which should correspond to the observable transition time at TP0 (larger than the internal value).

Append "Insertion loss deviation is calculated as specified in 93A.4, where T t is 0.1 ns,

Intel

Comment Status D

L 48

Test Fixture Minimum Loss Comment # 227

Spec being commented:

163.9.2.1.1 Test fixture insertion loss	44 45
	46
The insertion loss of the test fixture shall be less than 5 dB at 26.56 GHz. The magnitude of the insertion loss	47
deviation of the test fixture shall be less than or equal to 0.2 dB from 0.05 to 26.56 GHz.	48

Test Fixture ERL Comment [# 65, #161]

Spec being commented:

163.9.2.1.2 Test fixture effective return loss

ERL of the test fixture at TP0v is computed using the procedure in 93A.5 with the values in Table 163–6. Parameters that do not appear in Table 163–6 take values from Table 163–11.

Table 163–6—Test fixture ERL parameter values

Parameter	Symbol	Value	Units
Transition time associated with a pulse	Tr	0.01	ns
Incremental available signal loss factor	$\beta_{\rm x}$	0	GHz
Permitted reflection from a transmission line external to the device under test	$\rho_{\rm X}$	0.618	
Length of the reflection signal	Ν	20	UI
Equalizer length associated with reflection signal	N _{bx}	0	UI
Twice the propagation delay associated with the test fixture	T _{fx}	0	ns
Tukey window flag	tw	1	_

C/ 163 SC 163.9.2.1.2

L 21 # 65

Ran, Adee

Comment Type T

Intel

P 178

Comment Status D

test fixture

Per resolution of comment 154 against D1.2 there should be a requirement on test fixture ERL:

"The ERL at TP0v shall be greater than or equal to TBD".

This part has not been implemented.

With N=20 the ERL of the test fixture is expected to be very good. The TBD may be changed to 15 dB (same as in clause 137) if there is consensus.

SuggestedRemedy

Add the following sentence after the table"

"The ERL at TP0v shall be greater than or equal to TBD dB".

Consider changing TBD to 15 dB.

Proposed Response Response Status W PROPOSED ACCEPT.

[Editor's note: Addresses incomplete specification.]

C/ 163	SC 163.9.2.1.2	P 178	L 5	#
--------	----------------	-------	------------	---

Comment Status D

Marvell

161

test fixture

There is no specification for the ERL of the test fixture

SuggestedRemedy

Comment Type T

Dudek, Mike

Insert a Paragraph "The ERL of the test fixture shall be greater than TBD dB"

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: Addresses incomplete specification.] Resolve using the response to comment #65.

TPOv V_peak Comment [# <u>13</u>, #5]

C/ 120F SC 120F.3.1 P 208	L 20	# 13			0.470	1.50	
Mellitz, Richard Samtec				C/ 163 SC 163.9.2	P 1/6	L 50	# 5
Comment Type TR Comment Status D			vpeak	Mellitz, Richard	Samtec		
We need to specify V_peak/V_f not V_peak I.e.	pulse peak loss			Comment Type TR	Comment Status D		terminology
SuggestedRemedy				We need to specify \	/_peak/V_f not V_peak. I.e. p	ulse peak loss	
Change				SuggestedRemedy			
Difference between measured and reference line To	ar fit pulse peak			Change Difference between r	neasured and reference linea	ar fit pulse peak	
Difference between measured and reference line	ar fit pulse peak los	s (min) d(V_pe	ak/V_f)	To Difference between r	noncurad and reference lines	ar fit pulco poak lo	cc(min) d/(nook/)/f
Proposed Response Response Status W						ii iit puise peak io:	ss (min) u(v_peak/v_t)
PROPOSED ACCEPT IN PRINCIPLE.				Proposed Response	Response Status W		
				PROPOSED ACCEP	T IN PRINCIPLE.		
It is assumed that the comment is requesting tha V_peak/V_f, rather than just V_peak. If that is the case, implement the following with end To make the parameter easier to read and use, of V_peak/V_f. Define the difference between the reference and For task force review. [Editor's note: CC: 163, 120F]	t the specification b ditorial license lefine the ratio R_pe measured ratio as (e for the ration eak equal to dR_peak.	of	Resolve using respo [Editor's note: CC: 16	ngse to comment #13 63, 120F]		

Spec being commented:

Difference between measured and reference linear fit pulse peak (min), dv_{peak}	163A.3.2.1	TBD	v	50 51 52

TPOv Thresholds Comment [<u># 61</u>, #83, #84]

C/ 163	SC	163.9.2	P 176	i L	44	# 61
Ran, Adee			Intel			
Comment Ty	pe	т	Comment Status)		vf/vpeak/erl
Table 163-5 has multiple TBDs.						

Reference ERL, v_f and v_peak are calculated with an idealized package model. Real products deviate from this model, so the limit values may need adjustment.

v_f and v_peak may be degraded by a device or pacakge, but that can be mitigated using higher than minimum launch voltage and some equalization. So for dv_f and dv_peak, a minimum of 0 V may be acceptable.

There is no straightforward method to improve ERL. So to allow a wide range of implementations, the minimum dERL should be less than 0 dB. A minimum of -3 dB may be acceptable.

SuggestedRemedy

Change value for dv_f in Table 163-5 from TBD to 0.

Change value for dv_peak in Table 163-5 from TBD to 0.

Change value for dERL in Table 163-5 from TBD to -3.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: Addresses incomplete specification.] Implement suggested remedy For task force discussion [Editor's note: CC: 163, 120F]

References:

Difference between measured and reference effective return loss (min), $dERL$	163A.3.2.2	TBD	ď₿
Common-mode to common-mode return loss (min)	162.9.3.5	2	dB
Difference between measured and reference steady-state voltage (min), dv_f	163A.3.2.1	TBD	v
Difference between measured and reference linear fit pulse peak (min), $dv_{\it peak}$	163A.3.2.1	TBD	v

Notes: comment #5 proposes to change V_peak to V_peak/V_f

Apply to comment #83, #84

TPOv Thresholds Comment [# 61, #83, #84] Contd.

CI 120F	SC 120F.3.1	P 2	08	L 18	#	83	C
Brown, Ma	att	Huaw	/ei				В
Comment	Туре Т	Comment Status	D			v	f Co
A valu of 0 sh	e for dv_f is requi nould be correct.	red. If an appropriate	e ref	ference transmitter is d	lefined,	then a value	
Suggested	IRemedy						Si
Replac	ce TBD with 0.						
Proposed	Response	Response Status	w				Pi
PROP	OSED ACCEPT I	N PRINCIPLE.					
[Editor Implen For tas	's note: Addresse nent the suggeste sk force review.	es incomplete specifi ed remedy.	icatio	on.]			

Spec being commented:

Difference between measured and reference steady-state voltage, $dv_f(\min)$	163A.3.2.1	TBD	v	18 19	
Difference between measured and reference linear fit pulse peak, dv_{neak} (min)	163A.3.2.1	TBD	v	20 21	

C/ 120F	SC 120F.3.1	P 2	08	L 21	# 84		
Brown, Matt	I.	Huaw	vei				
Comment Ty	ype T	Comment Status	D			vpeak	
A value value of	for dv_peak is re 0 should be corr	equired. If an appropect.	priate referer	nce transmitter	r is defined, the	n a	
SuggestedR	lemedy						
Replace	TBD with 0.						
Proposed Re PROPO	esponse ISED ACCEPT II	Response Status NPRINCIPLE.	W				
[Editor's note: Addresses incomplete specification.] Implement the suggested remedy. For task force review.							