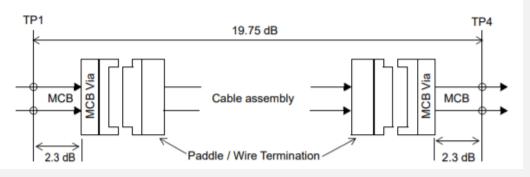
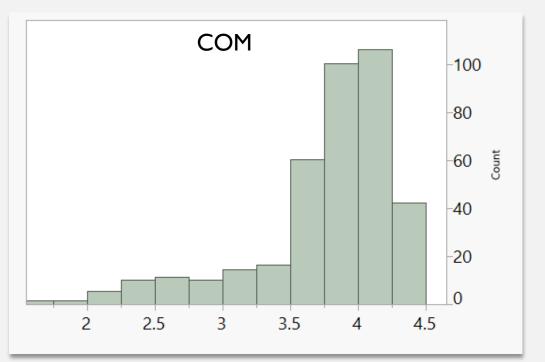
CA ERL: COMMENT #103

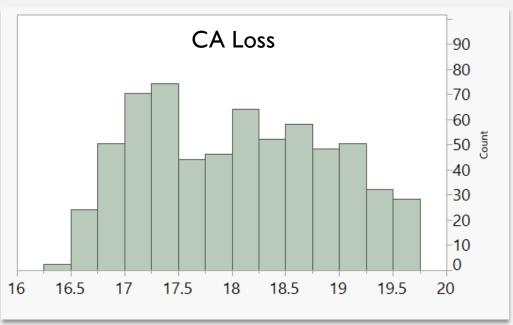
Bruce Champion, TE

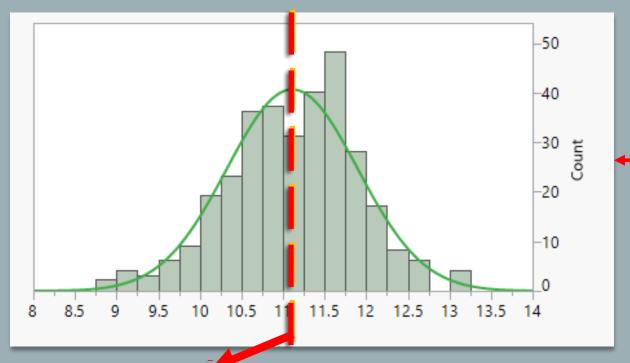
Overview

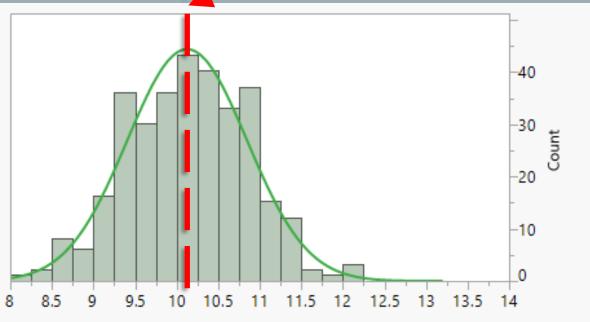

Table 162–16—Cable assembly characteristics summary

Description	Reference	Value	Unit
Maximum insertion loss at 26.56 GHz	162.11.2	19.75	dB
Minimum insertion loss at 26.56 GHz	162.11.2	11	dB
Minimum cable assembly ERL ^a	162.11.3	TBD	dB
Differential to common-mode return loss	162.11.4	Equation (162-9)	dB
Differential to common-mode conversion loss	162.11.5	Equation (162-10)	dB
Common-mode to common-mode return loss	162.11.6	Equation (162-11)	dB
Minimum COM	162.11.7	3	dB

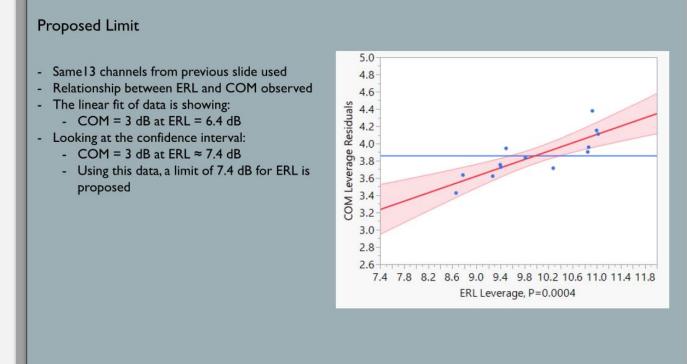

^aCable assemblies with a COM greater than 4 dB are not required to meet minimum ERL.


C/ 162	SC 162.11	P 163	L 18	# 103
Champion, Bruce		TE Connec		
	<i>Type</i> T Assembly ERI	Comment Status X	16	
Suggested TBD to		o 7.4 dB. See champion_3c	k_02_1020.pdf	
Proposed I	Response	Response Status O		
/ 162	SC 162.11	P 163	L 18	# 94
	SC 162.11	P 163 Molex	L 18	# 94
laser, Alex			L 18	# <u>94</u>
laser, Alex omment Typ		Molex Comment Status X	L 18	# 94
laser, Alex	pe TR D for CA ERL	Molex Comment Status X	L 18	# <u>94</u>
laser, Alex comment Typ Fill in TB uggestedRe	pe TR D for CA ERL emedy	Molex Comment Status X		


- 376 measured OSFP channels analyzed
 - Data measured to 50 GHz
 - Taken from Tp1-Tp4

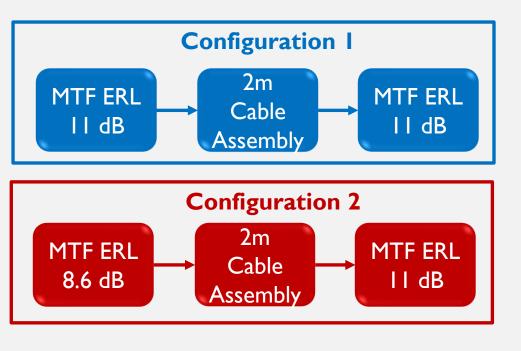


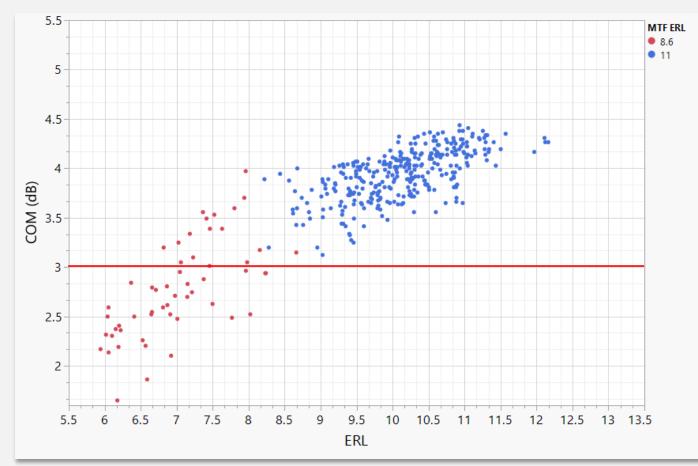
- All channel pass:
 - IL
 - Diff-to-Common RL
 - Diff-to-Common conversion loss
 - Common-to-Common RL
- Some lanes fail COM
 - Reasoning will be shown on later slides


- The way we calculate ERL was modified between COM version 2.93 and 2.95
- This resulted in a reduced ERL value

• The way we calculated ERL in version 2.93

The same exact channels ran through 2.95 version


The way we calculate ERL in version 2.95 ERLValues are lowered by 1 dB!


Slide from champion_3ck_02_1020.pdf

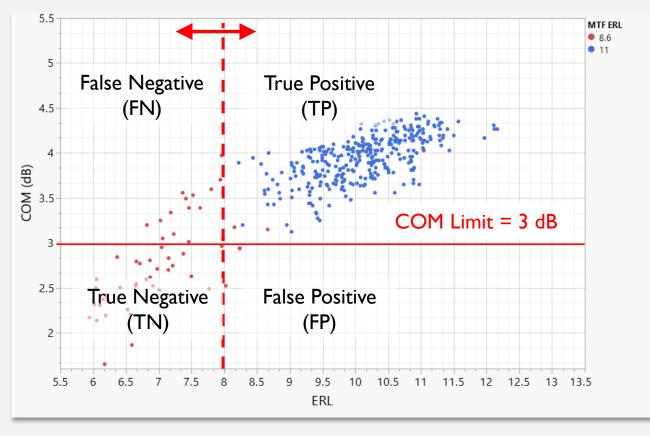
- Data presented champion_3ck_02_1020.pdf recommending ERL of 7.4
- Limited data points were included in this presentation
- At the time it was requested that we need more data
- More data was collected and is shown on next slide

- To fill in plot two different MCBs were used
- Configurations shown below

- A MTF ERL of 8.6 dB is below most recommendations and will most likely not be in the specification
 - Most recommendations are in the 10 dB range
- If a MTF with ERL of 10dB is used, it is reasonable to assume the results will lie somewhere between the 8.6 dB ERL
 MTF and 11 dB MTF ERL
- Next slide reviews how we look at this data to determine best balance between ERL and COM
 - We don't want to fail assemblies for ERL that have passing COM (False Negative)
 - We don't want to pass assemblies for ERL that show consistently failing COM values (False Positive)

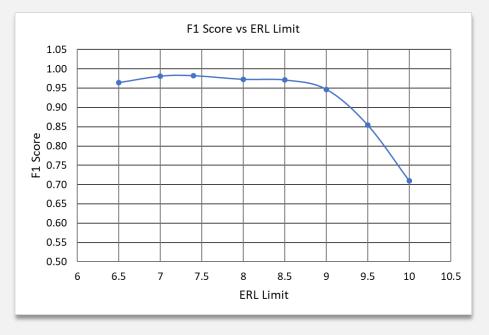
- We don't know what ERL value breaks a system
- COM is our best indicator to date of whether a channel will work
- We can statistically correlate ERL to COM

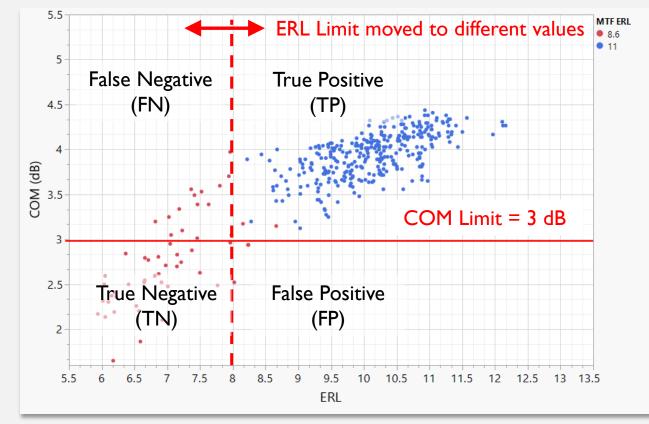
To determine where ERL limit should be


- ERL limit is varied from 6.5 to 10 dB in 0.5 dB increments
- Confusion matrix created to count TP, TN, FN, FP instances for various ERL limits
- Precision minimizes False Positives
- Recall minimizes False Negatives
- FI Score combines Precision and Recall to get the best balance between the two

$$Precision = \frac{TP}{TP + FP}$$
$$Recall = \frac{TP}{TP + FN}$$

 $F1 = \frac{2 * Precision * Recall}{Precision + Recall}$


- We don't want to fail assemblies for ERL that have passing COM (False Negative)
- We don't want to pass assemblies for ERL that show consistently failing COM values (False Positive)



- The data was broken up into a confusion matrix using varying CA ERL Limits
- The higher the FI score the better balance between recall (False Negatives) and precision (False Positives)

ERL Limit	6.5	7	7.4	8	8.5	9	9.5	10
True Positive	338	337	332	323	319	304	252	186
True Negative	13	26	32	35	38	38	38	38
False Positive	25	12	6	3	0	0	0	0
False Negative	0	I	6	15	19	34	86	152
Precision	0.931	0.966	0.982	0.991	1.000	1.000	1.000	1.000
Recall	1.000	0.997	0.982	0.956	0.944	0.899	0.746	0.550
FI Score	0.964	0.981	0.982	0.973	0.971	0.947	0.854	0.710

- All of the data shown here is actual measurement data taken on 2m OSFP Assemblies
- Higher CA ERL limits show a dramatic drop in the FI score
- Data is showing an optimal CA ERL in the 7.4 dB range
 - Achieves balance between COM and ERL
- Other MDIs such as QSFP-DD have not been taken into consideration for this study

Questions