Measured vs. Simulated Correlation of Package Model

Mau-Lin Wu, Ching-Ku Liao, Po-Hsiang Huang

MediaTek

For IEEE 802.3ck

P802.3ck

Supporters

- Liav Ben-Artsi, Marvell
- Richard Mellitz, Samtec
- Ali Ghiasi, Ghiasi Quantum

Outlines

- Background
- Model Decomposition
- Measured vs. Simulated Models Correlation
- Summary

Background

- During D1p4 comment stage, <u>comments #115</u>, <u>#116</u>, and <u>#117</u> proposed the following change
 - − C_p = 87 fF \rightarrow 60 fF
- One contribution, bois 3ck adhoc 01 011321, shared related justifications
- Remind #1: there were some previous contributions on this topic & we set up the consensus of C_p = 87 fF based on them
 - mellitz 3ck adhoc 03 081518, benartsi 3ck 01 0119, benartsi 3ck 01a 0319, and others
- Remind #2: COM is sensitive to C_p value, wu 3ck 01 0119
 - − COM difference ~= 0.3 dB for C_p = 87 \rightarrow 60 fF
- The correlation of measured and simulated package models was analyzed
 - C_p = 87 fF is more correlated to measured TDR than 60 fF

The Example TPOv Test Fixture – Model Decomposition

- From Bump pad to TPOv
 - Measurement TDR
- 2 types of PKG models
 - EM_Model: created by EM solver
 - IEEE_PKG_Model
- TDR of the following 3 models are compared with Meas. TDR Data

Model	РКС	TP0 to TP0v
EM_Model	EM_Model	Meas. Data
COM_Cp_87fF	COM PKG w/i Cp = 87 fF	Meas. Data
COM_Cp_60fF	COM PKG w/i Cp = 60 fF	Meas. Data

Information of IEEE COM PKG Model & BGA Ball

- IEEE PKG Model
 - Zc, Zp: set to align PKG substrate design
 - Zc = 92.5 Ohm, Zp = 6 mm
 - Zc1, Zp1, Cp: adopt IEEE values
 - For Via, PTH, & BGA ball
 - Zc1 = 92.5 Ohm, Zp1 = 1.8 mm
- Observations of IEEE_COM_PKG_Model
 - Two cascaded TL with Cp can approximate the EM simulation results well
 - Cp: model not only BGA ball, but also the interconnection between via and ball
 - Extracting BGA ball only with the EM simulator cannot represent the Cp and thus under-estimate capacitance value
- BGA geometry
 - BGA diameter = 600 um
 - Ball pitch = 1000 um

TDR Responses – Comparison

Model	РКС	TP0 to TP0v
EM_Model	EM_Model	Meas. Data
COM_Cp_87fF	COM PKG w/i Cp = 87 fF	Meas. Data
COM_Cp_60fF	COM PKG w/i Cp = 60 fF	Meas. Data

- TDR rise time (20%~80%) = 7.5 ps
- EM model matches well with measured TDR data
- 'COM_Cp_87fF' model matches well at PKG part
 - Z ~= 78 Ohm @ BGA ball, close to measured data
 - Z ~= 82 Ohm for Cp = 60 fF

TDR Response for measurement, EM model and IEEE_COM_model

Summary

- Based on the previous analysis & this new correlation data, we suggest
 - Keep Cp = 87 fF in IEEE COM PKG model for considering big packages in the host side

Thank You

