Measured vs. Simulated Correlation of Package Model

Mau-Lin Wu, Ching-Ku Liao, Po-Hsiang Huang

MediaTek

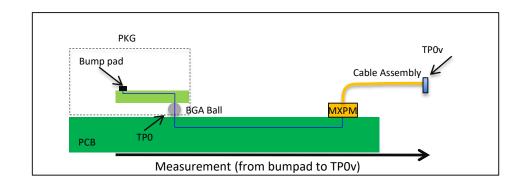
For IEEE 802.3ck

Supporters

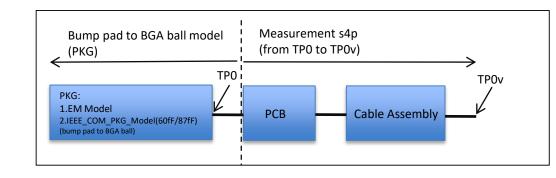
- Liav Ben-Artsi, Marvell
- Richard Mellitz, Samtec
- Ali Ghiasi, Ghiasi Quantum

Outlines

- Background
- Model Decomposition
- Measured vs. Simulated Models Correlation
- Summary



Background


- During D1p4 comment stage, <u>comments #115</u>, <u>#116</u>, and <u>#117</u> proposed the following change
 - C_p = 87 fF → 60 fF
- One contribution, bois 3ck adhoc 01 011321, shared related justifications
- Remind #1: there were some previous contributions on this topic & we set up the consensus of $C_p = 87$ fF based on them
 - mellitz 3ck adhoc 03 081518, benartsi 3ck 01 0119, benartsi 3ck 01a 0319, and others
- Remind #2: COM is sensitive to C_p value, wu 3ck 01 0119
 - COM difference \sim = 0.3 dB for C_p = 87 → 60 fF
- The correlation of measured and simulated package models was analyzed
 - C_p = 87 fF is more correlated to measured TDR than 60 fF

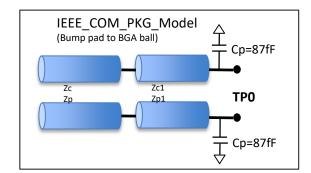
The Example TP0v Test Fixture – Model Decomposition

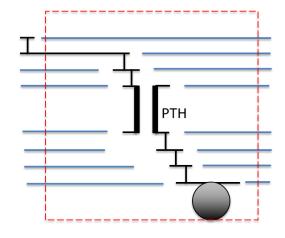
- 2 types of PKG models
 - EM Model: created by EM solver
 - IEEE_PKG_Model

P802.3ck

Information of IEEE COM PKG Model & BGA Ball

IEEE PKG Model

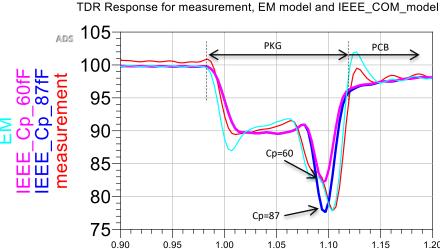

- Zc, Zp: set to align PKG substrate design
 - Zc = 92.5 Ohm, Zp = 6 mm
- Zc1, Zp1, Cp: adopt IEEE values
 - For Via, PTH, & BGA ball
 - Zc1 = 92.5 Ohm, Zp1 = 1.8 mm


Observations of IEEE_COM_PKG_Model

- Two cascaded TL with Cp can approximate the EM simulation results well
- Cp: model not only BGA ball, but also the interconnection between via and ball
- Extracting BGA ball only with the EM simulator cannot represent the Cp and thus under-estimate capacitance value

BGA geometry

- BGA diameter = 600 um
- Ball pitch = 1000 um



TDR Responses – Comparison

- TDR of the following 3 models are compared with Meas. TDR Data (from bump pad to TPOv)
 - Take 'measurement' as golden

TDR Response	PKG Model	TP0 to TP0v Model
'EM'	Model extracted by EM simulator	Meas. Data
'IEEE_COM_Cp_60fF'	COM PKG w/i Cp = 60 fF	Meas. Data
'IEEE_COM_Cp_87fF'	COM PKG w/i Cp = 87 fF	Meas. Data

- EM model matches well with measured TDR data
- 'COM Cp 87fF' model matches well at PKG part
 - Z ~= 78 Ohm @ BGA ball, close to measured data
 - $Z \sim = 82$ Ohm for Cp = 60 fF

- 'measurement' settings
 - Min. Freq. = 10 MHz, Step = 10 MHz, Max. Freq. = 50 GHz

time, nsec

TDR rise time $(20\%^{80\%}) = 7.5 \text{ ps}$

1.20

Summary

- Based on the previous analysis & this new correlation data, we suggest
 - Keep Cp = 87 fF in IEEE COM PKG model for considering big packages in the host side

Thank You

