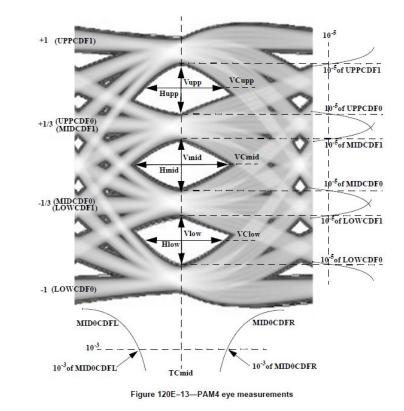

Annex 120G (C2M) Comment Resolution


Matt Brown Huawei P802.3ck Editor-In-Chief

IEEE P802.3ck Task Force May 2021

EH/VEC Method Comment 47

- h) Compute Vmid, Vupp, Vlow, VCmid, VCupp, VClow from the eye diagram using 120E.4.2 steps 4) through 6) with the exception that the CDF of the signal voltage is accumulated over the time interval t₅ ± 0.05 UI instead of "within 0.025 UI of time TCmid".
- i) The eye height is the minimum of Vmid, Vupp, and Vlow.
- j) Compute the vertical eye closure using Equation (120E-4) and the values computed in step h) with the exception that VM3, VM2, VM1, and VM0 are the average values over the time interval t_z ± 0.05 UI instead of "within 0.025 UI of time TCmid".

19

20

21

22

23

24

25

27

28

29

EH/VEC Method Comment 180

C/ 120G	SC	120G.5.2	P 253	L 23	# 180
Dawe, Piers			Nvidia		32
Comment T	ype	TR	Comment Status D		EH/VEC method

This draft has a primitive rectangular eye mask (H = either EHmin or EA/VECmax), although it is described as a histogram. It's an inefficient/inaccurate way of measuring a signal quality vertically and provides weak and uncertain protection against too much jitter. This is worse with the higher VEC limit in the latest draft that allows worse and more varied signals, and is a particular concern for very short host channels (see Mike Dudek's work) that can have faster edges than higher loss ones.

SuggestedRemedy

Change from a 4-cornered mask with corners at t = ts+/-0.05, V = k +/-H/2 to a 10-cornered mask with corners at t = ts+/-0.05, ts+/-1/16, ts+/-3/32, V = k +/-H/2, k +/-H*0.4, k. k is VCmid, VCupp or VClow.

In case it's not clear, H is either EHmin or Eye Amplitude * 10^(-VECmax/20).

This simple scalable method can remain as the EH and VEC limits are revised. Scopes have been measuring with 10-sided masks for many years, it's not more difficult than a rectangular mask.

Proposed Response Response Status W

PROPOSED REJECT.

The currently methodology was chosen over an eye mask method like that being proposed in this comment.

See slide 3 of the following presentation was reviewed by the task force:

https://www.ieee802.org/3/ck/public/21_01/brown_3ck_04_0121.pdf

The comment does not provide sufficient justification to support the proposed changes.

- g) Compute an eye diagram from y_{TS}(k), including the effect of Gaussian noise with variance calculated in the previous step, but taking into account that some noise from the measurement instrument is already in y_{TS}(k).
- h) Compute Vmid, Vupp, Vlow, VCmid, VCupp, VClow from the eye diagram using 120E.4.2 steps 4) through 6) with the exception that the CDF of the signal voltage is accumulated over the time interval t₅ ± 0.05 UI instead of "within 0.025 UI of time TCmid".
- i) The eye height is the minimum of Vmid, Vupp, and Vlow.
- j) Compute the vertical eye closure using Equation (120E-4) and the values computed in step h) with the exception that VM3, VM2, VM1, and VM0 are the average values over the time interval t₅ ± 0.05 UI instead of "within 0.025 UI of time TCmid".

Slide 4 in

https://www.ieee802.org/3/ck/public/21_01/brown_3ck_04_0121.pdf

Comments 154 Annex 120G EO Method

C/ 120G	SC 120G.5.2	P 246	L 23	# 154
Dawe, Piers		Nvidia		
Comment Ty	e TR	Comment Status D		EO method

Of all the options in dawe_3ot, 01a_1020, this draft has the most primitive (inctangular eye mask) although it is desoribed as a histogram. It's an inefficient/inacourate way of measuring a signal and provides weak and uncertain protection against too much filter. This will get worse if we relax the VEC limits, and is a particular concern for very short host channels (see Mike Dudet's work).

SuggestedRemedy

Change from a 4-cornered mask with corners at t = ts+/-0.05, V = +/-Hmin/2 to a 10-cornered mask with corners at t = ts+/-0.05, ts+/-0.07, ts+/-0.1, V = +/-Hmin/2, +/-Hmin/0.4, +/-0.

(In case it's not clear, Hmin, already specified, is the greater of EH and Eye Amplitude -VEC. There will be discussion about changing those limits from other comments, but this is a simple scalable method that can remain as the EH and VEC limits are revised.)

Proposed Response Response Status W PROPOSED REJECT.

PROPOSED REJECT. This comment proposes a technical change to the draft that does not address technical

completeness. The comment does not provide sufficient evidence to support the proposed changes.

Straw Poll #12:

Polls #9 and #12.

approved.pdf

Straw Poll #9:

A: Keep ESMW and eve width

proposed in healey 3ck 01a 1020

Results: A: 9, B: 10, C: 24, D: 6

in dawe 3ck 01 1020

 I would support replacing ESMW and EW with the following option from healey_3ck_02_1020

 A. "Alt. 2" with TBD = 50 mUI

 B. "Alt. 1" with TBD 1 = 25 mUI and TBD2 = 25 mUI

 C. "Alt. 1" with TBD 1 = 50 mUI

 D. "Alt. 2" with TBD 1 = 50 mUI

 A. "Alt. 2" with TBD 1 = 50 mUI

 A. "Alt. 2" with TBD 1 = 50 mUI

 A. "Alt. 2" with TBD 1 = 50 mUI

 A. "Alt. 1" with TBD 1 = 50 mUI

 A. "Alt. 2" with TBD 1 = 50 mUI

 A. "Alt. 3" with TBD 1 = 0 mUI

 A. "Alt. 2" with TBD 1 = 0 mUI

 A. "Alt. 8. 8. 6. (-1, 4) 9

Draft 1.4 fully specifies the eye height and vertical eye closure.

necessary eve width is enforced by these specifications.

I support the EW/ESMW direction of (Chicago rules):

Supporting presentations for the current methodology show that

https://www.ieee802.org/3/ck/public/20_10/healey_3ck_01a_1020.pdf https://www.ieee802.org/3/ck/public/20_10/healey_3ck_02_1020.pdf

Broad support for this methodology was demonstrated by D1.3 Straw

https://www.jeee802.org/3/ck/public/20 10/minutes 3ck 1020 final un

B: Replace EH, ESMW, and eye width with an eye mask as proposed

C: Remove ESMW and eve width and redefine EH and VEC as

D: Remove ESMW and eve width and leave EH and VEC as is

Reference receiver CTLE, fix peak gain Comments 127

C/ 120G	SC 120G.5.2	P 252	L 32	# 127
Ran, Adee		Cisco		
Comment Ty	/ре т	Comment Status D		RR CTLE
	· · · · · · · · · · · · · · · · · · ·	parameters fr fp1 fp2 and	aDC areata CTI	E transfor functions

The reference receiver parameters fz, fp1, fp2, and gDC create CTLE transfer functions that are not necessarily passive (up to 0 dB across the spectrum) for all combinations.

This is different from the reference receiver used in the previous C2M specification (Annex 120E). Although 120E uses different equation and parameters, the resulting CTLE combinations always have combinations of the parameters Z1 and G that create 0 dB gain at the peaking frequency.

(The reference receiver CTLE in 120E is essentially similar to the one used in the COM method in all CR/KR specifications, in that the peaking is created by varying the zero while keeping the poles constant, with the zero being equal to fp1 for zero peaking; 120E has an addition of a flat gain G to create 0 dB maximum gain; this gain has no effect on COM, but does affect the eye height).

There was no indication or claim that the CTLE in this annex has better performance or better matches real designs than a CTLE similar to Annex 120E (with different peaking frequency). In fact, with the addition of a DFE to the reference receiver, a CTLE similar to the one in Annex 120F (C2C) may be more adequate, as the equalization at Nyquist frequency can utilize the DFE.

It is suggested to modify the reference receiver transfer functions to be similar to those of 120E. This requires a minor change in the definition of the CTLE in Annex 93A (COM).

SuggestedRemedy

Bring 93A.1.4.3 (Receiver equalizer) into the draft, and change Equation 93A–22 to include an additional factor G. Add a description of G below the equation:

"where G is a gain factor, whose value depends of the variable norm_ctle as follows:

- If norm_ctle is 1, G is set based on g_DC, f_z, g_DC2, f_LF, f_p1, and fp2, such that the maximum of H_ctf(f) across f is equal to 1.

- If norm_ctle is 0 or is not provided by the clause that invokes this method, G is set to 1."

In Table 120G–12, change the values of f_z and f_p1 to f_b/2.5, change the value of f_p2 to f_b, and add the parameter norm_ctle with value 1.

A presentation with the effect of the proposed change will be provided.

Proposed Response Response Status W

PROPOSED REJECT.

The comment does not provide sufficient evidence to make the proposed changes. All of the simulations and related specifications thus far have been based upon the current CTLE pole-zero and gain parameters. Any changes to these parameters would require all related specifications to be revisited.

Straw Poll #1:

For the reference CTLE of Annex 120G (choose one):

A. I would support the proposed change if it does not degrade VEC/EH compared to the current parameters.

B. I would support the proposed change if it improves VEC/EH compared to the current parameters, and change the max VEC / min EH accordingly.

C. I am interested in the proposed change but some modifications are required.

D. I would not support the proposed change (even with modifications). E. I need more information.

F. I don't have an opinion.

Results: A: 3, B: 3 , C: 3 , D: 12 , E: 10 , F: 8

Related presentation:

https://www.ieee802.org/3/ck/public/adhoc/apr21 21/ran 3ck adhoc_01_042121.pdf

Table 120G-12-Eye opening reference receiver parameter values

Parameter	Symbol	Value	Units
Receiver 3 dB bandwidth	fr	0.75 × 36	GHz
Continuous time filter, DC gain for TP1a Range for g _{DC2} = 0 Range for -1 ≤ g _{DC2} < 0 Range for -2 ≤ g _{DC2} < -1 Range for -3 ≤ g _{DC2} < -2 Step size	SDC	-2 to -9 -2 to -12 -4 to -12 -6 to -13 1.0	dB
Continuous time filter, DC gain 2 for TP1a Minimum value Maximum value Step size	SDC2	-3 0 0.5	dB
Continuous time filter, DC gain for TP4 near-end Minimum value Maximum value Step size	SDC	-5 -2 1.0	dB
Continuous time filter, DC gain 2 for TP4 near-end Minimum value Maximum value Step size	SDC2	-2 0 0.5	dB
Continuous time filter, DC gain for TP4 far-end Minimum value Maximum value Step size	\$ _{DC}	-9 -3 1.0	dB
Continuous time filter, DC gain 2 for TP4 far-end Minimum value Maximum value Step size	SDC2	-3 -1 0.5	dB
Continuous time filter, zero frequency for $g_{DC} = 0$	f_z	12.58	GHz
Continuous time filter, pole frequencies	J_{p1} J_{p2}	20 28	GHz GHz
Continuous time filter, low-frequency pole/zero	JLF	Sp / 40	GHz

Reference receiver CTLE, value adjustments Comments 44, 178, 179, 183

C/ 120G SC 120G.5.2 P 252 L 16 # 44	C/ 120G SC 120G.5.2 P 252 L 16 # 183			
Ghiasi, Ali Ghiasi Quantum/Inphi	Dawe, Piers Nvidia			
Comment Type TR Comment Status D RR Ci				
gDC max value may result in very large VEC > 20 dB when module are tuned in the midd of range if plugged into min loss host.	The limits for TP4 gDC, gDC2 should not be the same for short and long output modes.			
SuggestedRemedy Suggest reducing gDC from -2 to -1 and see ghiasi 3ck 01 0421	SuggestedRemedy Create separate limits for TP4 short and long output modes.			
Proposed Response Response Status W	Proposed Response Response Status W			
PROPOSED ACCEPT IN PRINCIPLE. The following presentation was reviewed by the task force at a previous ad hoc meeting: https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ghiasi_3ck_adhoc_01a_042121.pdf For task force discussion	PROPOSED REJECT. The comment does not provide sufficient justification to support any changes and the suggested remedy does not provide sufficient detail to implement.			
CI 120G SC 120G.5.2 P 252 L 25 # 178	Table 120G-12—Eye opening reference rece	eiver parame	ter values	
Dawe, Piers Nvidia				
Comment Type TR Comment Status D RR CT	Parameter	Symbol	Value	Units
As a lot of the channel for TP4 far-end is known exactly, one would expect that a known subset of gDC, gDC2 combinations would be the only candidates to try. As for TP1a, I	Receiver 3 dB bandwidth	$f_{\rm r}$	0.75 × 5	GHz
believe the strongest gDC and gDC2 should add to a constant. SuggestedRemedy For Continuous time filter, DC gain for TP4 far-end (gDC), change to a set of limits that depend on gDC2 in the same style as for TP1a, with the strongest gDC and gDC2 adding to a constant. The allowed values should be a subset of those for TP1a.	Continuous time filter, DC gain for TPla Range for $g_{DC2} = 0$ Range for $-1 \le g_{DC2} < 0$ Range for $-2 \le g_{DC2} < -1$ Range for $-3 \le g_{DC2} < -2$ Step size	SDC	-2 to -9 -2 to -12 -4 to -12 -6 to -13 1.0	dB
Proposed Response Response Status W PROPOSED REJECT. The comment does not provide sufficient justification to support any changes and the suggested remedy does not provide sufficient detail to implement.	Continuous time filter, DC gain 2 for TP1a Minimum value Maximum value Step size	gDC3	-3 0 0.5	dB
Cl 120G SC 120G.5.2 P 252 L 12 # 179 Dawe, Piers Nvidia Comment Type TR Comment Status D RR CTLE	Continuous time filter, DC gain for TP4 near-end Minimum value Maximum value Step size	SDC	-5 -2 1.0	dB
By allowing stronger gDC with stronger gDC2, we can have up to 12 dB of peaking for $gCD2 = -1$ but up to 16 dB for $gDC2 = -3$ - yet we don't expect the maximum channel loss to vary like that.	Continuous time filter, DC gain 2 for TP4 near-end Minimum value Maximum value	SDC2	-2 0	dB
SuggestedRemedy For TP1a, change the second -12 to -11, and -13 to -10 (so the strongest "CTLE peaking"	Step size Continuous time filter, DC gain for TP4 far-end	SDC	0.5	
is 13). Proposed Response Response Status W	Minimum value Maximum value		-9 -3	dB
PROPOSED REJECT.	Step size		1.0	
The comment does not provide sufficient justification for the proposed change. It is not clear that the current specifications are harmful nor is there evidence that the proposed changes won't be harmful. The CTLE peaking provides equalization for the combination of ball to ball channel as well as the routing within the packages which may exceed 20 dB.	Continuous time filter, DC gain 2 for TP4 far-end Minimum value Maximum value Step size	SDC2	-3 -1 0.5	dB

Host/Module output AC CM noise value Comment 118

C/ 120G SC 120G.3.1	
---------------------	--

L 13

118

Ran, Adee Comment Type T Cisco Comment Status D

AC CM noise

Host output "AC common-mode output voltage (max, RMS)" is specified in Table 120G-1 as 17.5 mV.

P 237

This value is tighter than what is allowed for CR transmitter measured at the same point (30 mV) and also tighter than the specification for KR/C2C.

Analysis of the effect of 17.5 mV vs. 30 mV has not been provided. Devices with higher AC CM output have been demonstrated to operate with real receivers at acceptable BER on a variety of channels.

Unless evidence is provided that 30 mV is unacceptable with real receivers, the limit should be aligned with the CR specification.

Applies similarly to Module output characteristics in Table 120G-3.

SuggestedRemedy

Change the value for AC common-mode output voltage (max, RMS) from 17.5 to 30, in Table 120G–1 and Table 120G–3.

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Implement suggested remedy. For task force discussion. [Editor's note: Line number changed from blank to 13.]

Table 120G-1-Host output characteristics at TP1a

Parameter	Reference	Value	Unit
Signaling rate, each lane (range)		53.125 ± 50 ppm ^a	GBd
DC common-mode output voltage (max)	120G.5.1	2.8	v
DC common-mode output voltage (min)	120G.5.1	-0.3	v
Single-ended output voltage (max)	120G.5.1	3.3	v
Single-ended output voltage (min)	120G.5.1	-0.4	v
AC common-mode RMS output voltage (max)	120G.5.1	17.5	mV
ב בכבר המשר המשר המשר המשר המשר בכ	1200 5 1		

Table 162-10-Summary of transmitter specifications at TP2

Parameter	Subclause reference	Value	Units
Signaling rate, each (nominal)		53.125 ± 50 ppm ^a	GBd
Unit interval (nominal)		18.82353	ps
Differential pk-pk voltage with Tx disabled (max) ^b	93.8.1.3	30	mV
DC common-mode voltage (max) ^b	93.8.1.3	1.9	v
AC common-mode RMS voltage, v_{cmi} (max) ^b	93.8.1.3	30	mV

Table 163-5-Summary of transmitter specifications at TP0v

Parameter	Reference	Value	Units	
Signaling rate		53.125 ± 50 ppm ^a	GBd	
Differential pk-pk voltage (max) ^b Transmitter disabled Transmitter enabled	93.8.1.3	30 1200	mV mV	
DC common-mode voltage (max) ^b	93.8.1.3	1.0	V	
DC common-mode voltage (mm) ^b	93.8.1.3	0.2	v	
AC common-mode RMS voltage (max) ^b	93.8.1.3	30	mV	
Difference offective return lass dEBI (min)	162.0.2.2		an.	

Table 120F-1-Transmitter electrical characteristics at TP0v

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		53.125 ± 50 ppm ^a	GBd
Differential peak-to-peak output voltage ^b (max) Transmitter disabled Transmitter enabled	93.8.1.3	35 1200	mV mV
Common-mode voltage ^b (max)	93.8.1.3	1.9	v
Common-mode voltage ^b (min)	93.8.1.3	0	v
AC common-mode output voltage ^b (max, RMS)	93.8.1.3	30	mV

MO differential peak to peak voltage Comments 187, 206

C/ 120G	SC	120G.3.2	P2	40	L 8	# 206
Healey, A	dam		Broad	dcom Inc.		
Comment	Туре	TR	Comment Status	D		TP3 DPPV
should dynam propos	l be re nic rang sal for	duced. A lov ge that the l	wer output amplitud nost receiver needs dule output modes.	e for "short" to support.	" mode wou This was p	art of the original
Suggested	Reme	dy				
-		maximum d ut mode.	ifferential peak-to-p	eak output	voltage to 6	00 mV for the "short"
Proposed	Respo	nse	Response Status	W		
		ACCEPT I e discussion	N PRINCIPLE. n.			
C/ 120G	SC	120G.3.2	P 2	40	L 8	# 187
Dudek, Mik	e		Marve	ell		
Comment 7	ype	TR	Comment Status	D		TP3 DPP
	0mV o					necessary for a short
	and r	makes it mo	ore difficult for the h	lost receive	r to avoid b	eing overloaded.

Provide two rows for Differential peak-to-peak output voltage (max) one for "long mode" and one for "short mode". Leave the "long mode" at 900mV. Make the "short mode" 600mV

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Resolve using the response to comment #206.

Table 120G-3-Module output characteristics (at TP4)

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125ª	GBd
AC common-mode output voltage (max, RMS)	120G 5 1	17.5	mV
Differential peak-to-peak output voltage (max)	120G.5.1	900	mV
Eye height, differential (min)	120G.3.2.2	15	mV
Vartical ava closura (may)	1206322	12	dB

Implement similar to the following...

Differential peak-to-peak output voltage (max)	120G.5.1		
Short mode		600	mV
Long mode		900	mV
			1

The resolution of these comments may help to address comment #171 on the following slide.

IEEE P802.3ck Task Force, May 2021

MO EH value Comments 171

C/ 120G	SC 120)G.3.2	P2	40	L 9	# 17	1
Dawe, Piers	5		Nvid	ia			
Comment T	ype T	R	comment Status	D			TP3 EH
has 70 host wa noise o	mV, and ints the si r BER if <u>c</u>	the previou hort or long given a reas	ly reduced to de is draft had 24 n j setting, and ca sonable signal s he receiver.	nV. Yet n useful	a host design ly optimise for	er knows wheth e.g. different c	ier the rosstalk or
SuggestedF							
Increas	e the eye	height, sh	ort mode, from	15 mV to	18 mV		
Proposed R	esponse	R	esponse Status	W			
		CEPT IN F	RINCIPLE.				

Table 120G-3-Module	Table 120G–3—Module output characteristics (at TP4)							
Parameter	Reference	Value	1					

120G.5.1

120G.5.1

120G.3.2.2

120G 3 2 2

Resolve in conjuction with comments #187 and #206 which proposed to decrease the maximum differential peak-to-peak output voltage for short mode.

> If #187 and #206 are resolved such that the differential peak-to-peak output voltage (max) is decreased to 600 mV, then this comment might be resolved as (or similar): REJECT The resolution of comments #187 and #206 result in the differential peak-to-peak output voltage (max) value reduced from 900 mV to 600 mV.

Signaling rate, each lane (nominal)

Eye height, differential (min)

Untical and clorups (mar)

AC common-mode output voltage (max, RMS)

Differential peak-to-peak output voltage (max)

Units

GBd

mV

mV

mV

dЪ

53.125ª

17.5

900

15

Module output EH Comment 34

M2C Short and Long Channels

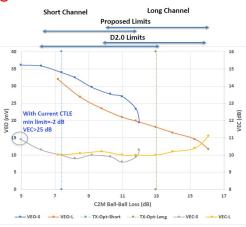
C/ 120G	SC	120G.3.2	P 2	40	L 10	# 34
Ghiasi, Ali			Ghia	si Quantu	um/Inphi	26.2
Comment 7	ype	TR	Comment Status	D		TP4 E
Given t	hat no	w we have	AUI-S/L far end ey	e would b	oe AUI-S min ey	e opening
Suggested	Remed	dy				
The eye ghiasi_		-) mUI rectangular w	indow fo	r AUI-L is VEO=	11 mV, see
Proposed R	espor	nse	Response Status	W		
Pendin https:// In Table For sho	g task www.ie e 1200 ort sett g setti	for review eee802.org 3-3 create ing leave E ng set EH	N PRINCIPLE. slide 9 of the follow /3/ck/public/adhoc/a separate rows for E EH (min) at 15 mV. (min) to 11 mV. page/line from 164/	apr21_21 H (min) f	/ghiasi_3ck_adl for short and lon	noc_01a_042121.pdf g setting.

Table 120G-3-Module output characteristics (at TP4)

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125 ^a	GBd
AC common-mode output voltage (max, RMS)	120G.5.1	17.5	mV
Differential peak-to-peak output voltage (max)	120G 5 1	900	mV
Eye height, differential (min)	120G.3.2.2	15	mV
Vertical eye closure (max)	120G.3.2.2	12	dB
Common-mode to differential return loss (min)	120G.3.1.1	Equation (120G-1)	dB
Effective return loss, ERL (min)	120G.3.2.3	8.5	dB
Differential termination mismatch (max)	120G.3.1.3	10	96
Transition time (min, 20% to 80%)	120G.3.1.4	8.5	ps
DC common-mode voltage (min) ^b	120G.5.1	-350	mV
DC common-mode voltage (max) ^a	120G.5.1	2850	mV

^aThe signaling rate range is derived from the PMD receiver input.

^bDC common-mode voltage is generated by the host. Specification includes effects of ground offset voltage


Current D2.0 definition of TP4 short and long

- Short 0 160 mm (6.6 dB) + MTF Loss
- Long 80 mm (3.1 dB) 244.7 mm (9.6 dB) + MTF Loss
 - 9.6 dB + 6.6 dB MTF loss exceed max 16 dB
 - 244.7 mm should be reduced to 239.7 mm (9.4 dB)
- Short channel max loss up to 13.2 results in significant VEC/VEO degrading
 - · Propose to reduce short channel max loss to 12 dB
- Not clear if MTF variations should be accounted or nor with current procedure explicitly specifying added trace

Proposed new limit for TP4 short/long adjusting short max loss and accounting for MTF loss

- Assumes MTF loss of 6.6 dB
 - Short range will be from 6.6 11.8 dB (0 132.6 mm)
 - Long range will be from 9.7 16 dB (80 239.7 mm)
- If one allow short range to go to as low as 5 dB VEC> 25 dB but this issue is avoided if one adjust for 1.6 dB MTF loss difference otherwise gDC need to be reduced from -2 dB to -1 dB.

A. Ghiasi

IEEE 802.3ck Task Force

MO test setup Comment 188

C/ 120G	SC	120G.3.2	2

/ 13

Dudek, Mike Comment Type T Comment Status D

188

TP3 XTALK

It is unlikely that a host that is asking for a "long mode" will have a fast risetime, and therefore the crosstalk will be less, helping the module achieve better VEC and VEO

P 241

Marvell

SuggestedRemedy

Change to "transition time of 10ps with short mode and 15ps with long mode". Also in table 120G-1 Change the existing row to be for "when requesting short mode" and add another row with value 15ps for "transition time (min 20% to 80%) when requesting long mode." and on page 245 line 53 change to "and transition time of 10ps with short mode and 15ps with long mode as measured at TP1a"

Proposed Response

Response Status W PROPOSED REJECT

The justification provided by the comment is not valid. The choice of long or short mode does reflect the insertion loss and therefore (in that regard) the transition time. In long

mode with more peaking, the transition time might be smaller.

120G.3.2.2 Module output eve height and vertical eve closure

Figure 120G-7 depicts an example module output eye height and vertical eye closure test configuration. Module output eye height and vertical eye closure are measured at TP4 using compliance boards defined in 120G.5.3. For each module output mode, eve height and vertical eve closure are measured according to the method described in 120G.3.2.2.1 using both the near-end and far-end host channels.

All counter-propagating signals are asynchronous to the co-propagating signals using the PRBS130 (see 120.5.11.2.1) or PRBS31Q (120.5.11.2.2) pattern, or a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal. For the case where PRBS130 or PRBS310 are used with a common clock, there is at least 31 UI delay between the patterns on one lane and any other lane, so that the symbols on each lane are not correlated. The crosstalk generator is calibrated at TP1a (without the use of a reference receiver) with target differential peak-to-peak voltage of 870 mV and transition time of 10 ps.

Note: Comment #233 (already closed) requests that the transition time parameters be collected in the stressed eye parameter tables.

Revised proposed response:

REJECT

8 9

10

11

12

13

The host output minimum transition time is specified as 10 ps. With a long trace similar transition time might be possible with appropriate transmitter equalization and/or use of a driver with faster transition time.

Table 120G-1-Host output characteristics at TP1a

Parameter	Reference	Value	Units GBd	
Signaling rate, each lane (range)		53.125 ± 50 ppm ^a		
DC common-mode output voltage (max)	120G.5.1	2.8	v	
DC common-mode output voltage (min)	120G.5.1	-0.3	v	
Single-ended output voltage (max)	120G.5.1	3.3	v	
Single-ended output voltage (min)	120G.5.1	-0.4	v	
AC common-mode RMS output voltage (max)	120G.5.1	17.5	mV	
Differential peak-to-peak output voltage (max) Transmitter disabled Transmitter enabled	120G.5.1	35 870	mV	
Eye height, differential (min)	120G.3.1.5	10	mV	
Vertical eye closure (max)	120G.3.1.5	12	dB	
Common-mode to differential return loss (min)	120G.3.1.1	Equation (120G-1)	dB	
Effective return loss, ERL (min)	120G.3.1.2	7.3	dB	
Differential termination mismatch (max)	120G.3.1.3	10	96	
Transition time (min, 20% to 80%)	120G.3.1.4	10	ps	

³For a PMA in the same package as the PCS sublayer. In other cases, the signaling rate is derived from the signalin rate presented to the PMA input lanes (see Figure 135-3 and Figure 120-3) by the adjacent PMA or FEC sublayers.

Comments 41 MO test setup

C/ 120G SC 120G.3.2.2.1 # 41 P242 / 10 Ghiasi Ali Ghiasi Quantum/Inphi Comment Type TR Comment Status D TP3 host PCB Table 120G-5 PCB length are for the reference MCB but based on construction the MCB loss may vary SuggestedRemedy Add note to the table that above PCB length assumes an MCB loss of 2.4 dB, please also list the PCB losses in dB instead of every reader trying to calculate 80 mm = 3.1 dB160 mm = 6.6 dB244.7 mm = 9.6 dBTo account for any difference in MTF loss from 6.6 dB it would be beter to list the dB value for the trace+MTF and list the PCB lenghts as reference, in that case then 80 mm becomes = 3 1+6 6 = 9.7 dB 160 mm becomes = 6 6+6 6 dB=13 2 dB 244.7 mm 9.6 + 6.6 dB=16.2 dB Looking at Ghiasi 3ck 01 0421 there are several issues with above limits: 1 Max trace loss need to be reduced from 244 7 mm to 239 7 mm so the max loss is 16 dB Current 160 mm max range for short results in excess VEC propose to reduce 132.6 mm (5.2 dB) The proposed optimized new limits become: Short 6.6 - 11.8 dB (inlcude 6.6 dB MTF loss) Long 9.7 - 16 dB (include 6.6 dB MTF loss)

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: Changed subclause from 120G.3.2.2 to 120G.3.2.2.1.]

The following related presentation was reviewed by the task force at a previous ad hoc meeting:

https://www.ieee802.org/3/ck/public/adhoc/apr21_21/ghiasi_3ck_adhoc_01a_042121.pdf The location of the measurement host PCB is not shown Figure 120G-8, but should be part of the measurement receiver between the MCB and the reference receiver. It would be helpful to note the assumed MCB insertion loss and the insertion loss associated with each of measurement host PCB lengths listed in Table 120G-5. However, it is not necessary to provide the sum of the two. Specifying host PCB length to finer

precision than 1 mm is not necessary.

Change long-far-end PCB length to 240 mm.

Change short-far-end PCB length to 133 mm.

In Figure 120G-7, change "reference receiver" to "host PCB and reference receiver". In Table 120G-5, add an extra column for host PCB insertion loss.

https://www.ieee802.org/3/ck/public/adhoc/apr21 21/ghiasi 3ck adhoc 01a 042121.pdf

120G.3.2.2.1 Near-end and far-end eye measurement methodology

The signal measured at TP4 is first convolved with a host channel. The host channel is the host receiver printed circuit board (PCB) signal path S(HOSPR) defined in 162.11.7.1.1 with the exceptions that the length z_p for each test is provided in Table 120G-5, and C₁ are both 0 nF. The eye height and vertical eye closure are measured using the method in 120G.5.2.

Table 120G-5-PCB length for module output measurements

near-end	328
and the state	0
far-end	160
near-end	80
far-end	244.7
	near-end

Module output mode	Host channel type	PCB length, z_p (mm)	PCB loss (dB)
Short	near-end	0	
Short	far-end	160 <u>133</u>	3.2
Long	near-end	80	A
Long	far-end	244.7 240	<u>9.4</u>

Figure 120G-7-Example module output test configuration

IEEE P802.3ck Task Force, May 2021

HO EH/VEC Comment 39

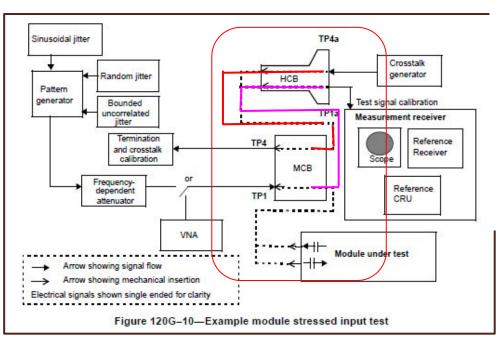
1.5			5	5				
C/ 120G	SC	120G.3.1	P 237	L 17	#	39	8	Table
Ghiasi, Ali			Ghiasi Qu	antum/Inphi			-64 - 84	Para
Comment	Туре	TR	Comment Status D			TP1 EH/VEC	2	Fala
VEC II	mit of	12 dB and	VEO limit of 10 mV resul	ts in well constructe	d host to	fail, this was	·	Signaling rate, each lane (rang
			ding timing window of +/-					DC common-mode output volt
Suggested	Reme	dy						DC common-mode output volt
			to shift the burden for ho					Single-ended output voltage (n
			d on timing window ts=+/- passed now will fail.	- 50 mUI. Unfortunt	atly the \	EC and VEO	3	Single-ended output voltage (n
			/EO=8 mV and VEC=13.	5 dB and see ghiasi	_3ck_01	_0421		AC common-mode RMS output
Proposed	Respo	nse	Response Status W				6	Differential peak-to-peak output
PROP	OSED	ACCEPT.						Transmitter disabled Transmitter enabled
	-		of the following presenta				ſ	Eye height, differential (min)
https://	www.	ieee802.org	/3/ck/public/adhoc/apr21	_21/ghiasi_3ck_adh	noc_01a_	042121.pdf	8	
								Vertical eye closure (max)

Table 120G–1—Host output characteristics at TP1a								
Parameter	Reference	Value	Units					
naling rate, each lane (range)		53.125 ± 50 ppm ^a	GBd					
C common-mode output voltage (max)	120G.5.1	2.8	v					
C common-mode output voltage (min)	120G.5.1	-0.3	v					
gle-ended output voltage (max)	120G.5.1	3.3	v					
ngle-ended output voltage (min)	120G.5.1	-0.4	v					
common-mode RMS output voltage (max)	120G.5.1	17.5	mV					
fferential peak-to-peak output voltage (max) ansmitter disabled ansmitter enabled	120G.5.1	35 870	mV					

120G.3.1.5

120G.3.1.5

mV


dB

Comments 140 (part 1) HI/MI SIT ERL test point

140 C/ 120G SC 120G.3.4.1.1 P 248 1 17 Hidaka, Yasuo Credo Semiconductor, Inc. Comment Type Comment Status D ERL TP Т It says "The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2." 120G.3.1.2 measures the host output ERL at TP1a rather than TP1. Hence, the ERL of the test system is measured at TP1a, not at TP1. SuggestedRemedy Change "The ERL of the test system as measured at TP1 meets the specification given in 120G 3 1 2 " to "The return loss of the test system at TP1 meets the ERL specification given in 120G.3.1.2 when measured at TP1a." Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Also, in Figure 120G-10 and figure 120G-9, the connections of the HCB and module under test to the MCB are incorrect. Implement the suggested remedy. In Figure 120G-9 connect the dashed line from the HCB TP1a path to the MCB TP1 path and connect the module under test input path to the MCB TP4 path. In Figure 120G-10 connect the dashed line from the MCB TP4 path to the HCB TP4a path and connect the host under test input path to the HCB TP1a path.

The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation. The frequency-dependent attenuator represents the host channel and may be implemented with PCB traces. The amount of applied peak-to-peak sinusoidal jitter used for the module stressed input test is given in Table 120G-9. Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to assure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a -3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum Jpage and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1. The target pattern senerator 20% to 80% transition time at the input to the test channel in the module stressed input test is 9 ps. The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2.

Comments 140 (part 2) HI/MI SIT ERL test point

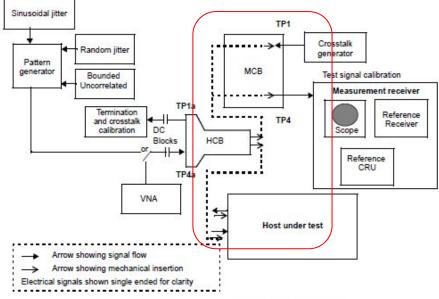


Figure 120G-9-Example host stressed input test

Comments 28, 30, 29, 31 (part 1) HI/MI SIT jitter calibration

C/ 120G SC 120G.3.3.3 P244 1 45 # 28 C/ 120G SC 120G.3.3.3.1 P 245 1 49 # 30 Mellitz, Richard Samtec Mellitz, Richard Samtec Comment Type TR Comment Status D host input jitter Comment Type Comment Status D host input jitter TR Reports of high VEC measurements were reported in calvin 3ck 02 1020 suggest 50 nUI of Si is a strong factor. The value of Si seems to be inherited from older specification. There is more than a few dB VEC difference between simulations using the COM Hence there does not seem to be a tie between Tx jitter measured and Rx jitter injected. computation script using 0.025 UI of Add and measurements using 50 mUI of Sj for a 16 dB channel. The measured VEC with 50 mUI of Sj approaches 15.7 dB, SuggestedRemedy The actual jitter injected during the a receiver compliance test may introduce a degree of Based on extrapolation from J3u in 162 and 163 add to table 120G-6 instrument and test set up litter uncertainty or amplification at the receiver test point. Jitter (max) SuggestedRemedy Jrms = 0.23 UI refer to 120F 3.1.3 J4u = 0.129 UI refer to 120F.3.1.3 Change p245 line 49 Even-odd litter, pk-pk = 0.023 UI refer to 120F.3.1.3 Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum Proposed Response Response Status W J4u, and complies with the even-odd jitter specification, in Table 120F-1. PROPOSED REJECT. To [Editor's note: Change subclause, page, and line from 120G.3.3/243/24 to Random litter and bounded uncorrelated litter are added such that the input to the host 120G.3.3.3/244/45.1 approximates the output jitter profile given by maximum JRMS and maximum J4u, and The commenter intended to refer to Table 120G-8 "Host stressed input parameters". complies with the even-odd jitter specification, in Table 120G-6. The following reflects the intent of the comment. Other solutions are possible like lowering injected Sj to 20 mUI. Comment #30 proposes related updates to text referring to Table 120G-8. Proposed Response Response Status W Comment #29 proposes similar updates for module input. Add the following jitter parameters to Table 120G-8: PROPOSED REJECT Jrms = 0.23 UI (target) refer to 120F.3.1.3 The intent of this comment is to update the text relating to the parameters proposed in J4u = 0.129 UI (target) refer to 120F.3.1.3 comment #28 Even-odd jitter, pk-pk (max) = 0.023 UI refer to 120F.3.1.3 Resolve using the response to comment #28. Including these jitter parameters to Table 120G-8 could be interpreted as being the intended end result of the calibration rather than a starting point per the methodology that references these parameters. The comment does not provide sufficient evidence for the suggested changes. Resolve in conjuction with comments #29 and #30. For task force discussion

https://www.ieee802.org/3/ck/public/adhoc/apr28_21/mellitz_3ck_adhoc_01a_042821.pdf

Comments 28, 30, 29, 31 (part 2) HI/MI SIT jitter calibration

C/ 120G SC 120G.3	3.4.1 P 247	L 43	# 29	C/ 120G	SC	120G.3.4.1	.1	P 248	L 12	# 31
Mellitz, Richard	Samtec			Mellitz, Ric	hard			Samtec		
Comment Type TR	Comment Status D		module input jtter	Comment 7	ype	TR	Comment S	tatus D		module input jtter
of Sj is a strong fact Hence there does no SuggestedRemedy	measurements were reported or. The value of Sj seems to b t seem to be a tie between Ty ion from J3u in 162 and 163 ar	e inherited from ol ; jitter measured ar	der specification. nd Rx jitter injected.	comput dB cha The ac	tation s nnel. T tual jit	script using The measur ter injected	0.025 UI of A red VEC with a I during the a r	dd and mea 50 mUI of Sj eceiver com	approaches 15.7 pliance test may	50 mUI of Sj for a 16
Jitter (max)	IOT TOTT JOU TO J AND	du to table 1200-1	0	Suggested	Remed	iv				
Jrms = 0.23 UI refer J4u = 0.129 UI refer Even-odd jitter, pk-p		.3		Change Randor	e p245 m jitter	line 49 and bound				he output of the pattern IRMS and maximum
Proposed Response	Response Status W			J4u, an					ation, in Table 12	
PROPOSED REJECT. [Editor's note: Changed subclause from 120G.3.2 to 120G.3.4.1 and line from 21 to 43] The commenter intended to refer to Table 120G-11 "Module stressed input parameters". Comment #28 proposes similar changes for the host input. Comment #30 proposes related updates to text referring to Table 120G-11. Implement the following with editorial license. Add the following jitter parameters to Table 120G-11: Jrms (target) = 0.23 UI refer to 120F.3.1.3 J4u (target) = 0.129 UI refer to 120F.3.1.3 Even-odd jitter, pk-pk (max) = 0.023 UI refer to 120F.3.1.3 Including these jitter parameters to Table 120G-1 could be interpreted as being the intended end result of the calibration rather than a starting point per the methodology that references these parameters. For task force discussion.			To Random jitter and bounded uncorrelated jitter are added such that the input to the host approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification, in Table 120G-10. Other solutions are possible like lowering injected Sj to 20 mUI.							
			Proposed Response Response Status W PROPOSED REJECT. The intent of this comment is to update the text relating to the parameters proposed in comment #29. Resolve using the response to comment #29.					neters proposed in		

Comments 28, 30, 29, 31 (part 3) HI/MI SIT jitter calibration

120G.3.3.3 Host stressed input test

The host stressed input tolerance is measured using the procedure defined in 120G.3.3.3.1. The input shall satisfy the input tolerance using the parameters Table 120G-8 for either the module output short or long mode.

Table 120G-8-Host stressed input parameters

Parameter	Value	
Applied peak-to-peak sinusoidal jitter	Table 120G-9	
Eye height (target)	15 mV	
Vertical eye closure (min)	12 dB	
Vertical eye closure (max)	12.5 dB	

#28 proposes to add newly JRMS, J4u, and EOJ to this table with new values.

Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to ensure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a –3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum J_{RMS} and maximum J4u, and complies with the even-odd jitter specification, in Table 120F–1. The counter propagating crosstalk signals during calibration of the stressed at TP1a (without the use of a reference receiver). The crosstalk signal transition time is calibrated with PRBS13Q. The pattern

#30 proposes to update the highlighted sentence to point to Table 120G-8. IEEE P802.3ck Task Force, May 2021 120G.3.4.1 Module stressed input test

The module stressed input tolerance is measured using the procedure defined in 120G.3.4.1.1. The input shall satisfy the input tolerance with the parameters in Table 120G-11.

Table	120G-11-	-Module	stressed	input	paramet	ters
-------	----------	---------	----------	-------	---------	------

Parameter	Value
Applied pk-pk sinusoidal jitter	Table 120G-9
Eye height (target)	10 mV
Vertical eye closure (min)	12 dB
Vertical eye closure (max)	12.5 dB

#29 proposes to add JRMS, J4u, and EOJ to this table with new values.

The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation. The frequency-dependent attenuator represents the host channel and may be implemented with PCB traces. The amount of applied peak-to-peak sinusoidal jitter used for the module stressed input test is given in Table 120G-9. Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to assure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a -3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JPMS and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1. The target pattern generator 20% to 80% transition time at the input to the test channel in the module stressed input test is 9 ps. The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2.

#31 proposes to update the highlighted sentence to point to Table 120G-11.

MI SIT Comment 125

C/ 120G	SC 120G.3.4	l.1.1	P 248	L 44	# 125
Ran, Adee			Cisco		
Comment Typ	e TR	Comment	Status D		module input SIT

"For the high loss case, pre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications."

It is not specified what kind of pre-emphasis the pattern generator should include. In presentations to the task force, there were some assumptions about a CR host transmitter (3 precursors and 1 postcursor); it is reasonable to assume similar capabilities for a C2M host output.

Also, it should be explicitly permissible to use pre-emphasis for both high-loss and low-loss cases.

SuggestedRemedy

Delete "For the high-loss case,"

Add after this sentence: "The pattern generator is expected to be able to apply preemphasis equivalent to the Transmit equalizer functional model specified in 162.9.3.1. Preemphasis may be set separately for the high-loss and low-loss cases".

Proposed Response Response Status W

PROPOSED REJECT.

The intent of the statement is meant as a helpful warning that it may need preemphasis (or as permission to use preemphasis) rather than to specify that preemphasis shall be required and if so how. For the high loss case, pre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications.

The change proposed in the suggested remedy would be as follows:

For the high loss case, pPre-emphasis capability is likely to be required in the pattern generator to meet the TP1a eye height and vertical eye closure specifications. The pattern generator is expected to be able to apply preemphasis equivalent to the Transmit equalizer functional model specified in 162.9.3.1. Pre-emphasis may be set separately for the high-loss and low-loss cases.

MI SIT Comments 126

(...) to result in the eye height for all three eyes given in Table 120G-11"

But:

The random jitter level has already been adjusted in a prior step (P248 L15) "such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J4u".

Random jitter cannot satisfy both conditions. Adding higher jitter than J4u/JRMS specifications is an overstress (since host output should not have such higher jitter). Unlike low EH, high jitter cannot be compensated by simple Rx circuitry.

Eye height should be adjustable by pattern generator output level (after VEC has been obtained by other means; this is the subject of another comment) but not using random jitter.

SuggestedRemedy

Delete "Random jitter and".

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Implement suggested remedy. For task force discussion.

In hindsight, this suggested remedy may not be valid as the text referenced in the comment specifies a starting point.

For the high-loss case, frequency-dependent attenuation is added such that the loss at 26.56 GHz from the output of the pattern generator to TP1a is 18.2 dB. The 18.2 dB loss represents 16 dB channel loss with an additional allowance for host transmitter package loss. Eve height and VEC are then measured at TP1a as described in 120G.5.2 Random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Figure 120G-10) to result in the eye height for all three eyes given in Table 120G-11 using the reference receiver with the setting that minimizes the vertical eye closure. The CTLE setting, $g_{DC}+g_{DC2}$, has to be less than or equal to -13 dB.

The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation. The frequency-dependent attenuator represents the host channel and may be implemented with PCB traces. The amount of applied peak-to-peak sinusoidal jitter used for the module stressed input test is given in Table 120G-9. Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to assure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a -3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum J_{PMS} and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1. The target pattern generator 20% to 80% transition time at the input to the test channel in the module stressed input test is 9 ps. The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2.

MI SIT Comment 224

specified in Annex 120G.

C/ 120G SC	120G.3.4.1.1	P2	49	L 8	# 224
Wu, Mau-Lin		Medi	aTek Inc.		-
Comment Type	TR Co	mment Status	D		module input SI7
However, 2.2 package trac	dB is too small e length.				er package loss. oss with 31 mm
SuggestedRemed	dy				
					to adopt the 19.5 dB r package loss is
Proposed Respon	nse Res	sponse Status	W		
	t does not provi				oosed change. The her than 53.125 GBd

	-
For the high-loss case, frequency-dependent attenuation is added such that the loss at 26.56 GHz from the	7
output of the pattern generator to TP1a is 18.2 dB. The 18.2 dB loss represents 16 dB channel loss with an	8
additional allowance for host transmitter package loss. Eye height and VEC are then measured at TP1a as	9
described in 120G.5.2. Random jitter and the pattern generator output levels are adjusted (without exceeding	10
the differential peak-to-peak input voltage tolerance specification as shown in Figure 120G-10) to result in	11
the eye height for all three eyes given in Table 120G-11 using the reference receiver with the setting that	12
minimizes the vertical eye closure. The CTLE setting, gDC+gDC2, has to be less than or equal to -13 dB.	13
	2.4

HI/MI SIT additive noise (part 1) Comment 119, 123

C/ 120G S	C 120G.3.	3.3.1 P 244	L 53	# 119
Ran, Adee		Cisco		
Comment Type	TR	Comment Status D		TP4 additive noise

In the host input stressed eye calibration procedure, "The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern".

This signal does not necessarily represent a real module output, in which the EH and VEC can also be affected by additive noise (which is quite different from jitter in its effect on a receiver). Stressing the host with a high level of bounded uncorrelated jitter (which is not fully specified, and may create different stress for different DUTs) does not test its ability to operate with a noisy module.

Adjusting the VEC using additive noise, as done in the CR/KR/C2C tolerance tests, should at least be allowed instead of using "bounded uncorrelated jitter", it may be preferable in some setups. For the time being, it is suggested as an alternative.

SuggestedRemedy

Add a wideband noise source to the diagram in Figure 120G–9, between the pattern generator and the HCB.

Add a description of the noise source to the text, with reference to 93C.1 (where noise source specification is defined) and setting f_NSD1 to 1 GHz, as in 163.9.3.4.

Add that calibrating the noise source level is an alternative method to adding BUJ for calibrating the EH and VEC.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

Proposed Response Response Status W

PROPOSED REJECT.

Comment #123 proposes a similar change to the module stressed input configuration. Additive amplitude noise is not the same as BUJ and so it is not an inter-changeable alternative.

The suggested remedy is not sufficiently complete to implement.

Refer to Clause 162 comment #207 which proposes to specify the characteristics of the additive noise.

C/ 120G	SC 120G.3.4	I.1.1 P 248	L1	# 123
Ran, Adee		Cisco		
Comment Tv	e TR	Comment Status D		TP2 additive noise

In the module input stressed eye calibration procedure, "The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation".

This signal does not necessarily represent a real host output, in which the EH and VEC can also be affected by additive noise (which is quite different from jitter in its effect on a receiver). Stressing the module with a high level of bounded uncorrelated jitter (which is not fully specified, and may create different stress for different DUTs) does not test its ability to operate with a noisy host.

Note that in a host transmitter it is often easier to control clock jitter than to reduce additive noise coupling from multiple sources in an ASIC.

Adjusting the VEC using additive noise, as done in the CR/KR/C2C tolerance tests, should at least be allowed instead of using "bounded uncorrelated jitter"; it may be preferable in some setups. For the time being, it is suggested as an alternative.

SuggestedRemedy

Add a wideband noise source to the diagram in Figure 120G–10, between the pattern generator and the frequency-dependent attenuator.

Add a description of the noise source to the text, with reference to 93C.1 (where noise source specification is defined) and setting f_NSD1 to 1 GHz, as in 163.9.3.4.

Add that calibrating the noise source level is an alternative method to adding BUJ for calibrating the EH and VEC.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

Proposed Response Response Status W

PROPOSED REJECT. Resolve using the response to comment #119.

HI/MI SIT additive noise (part 2) Comment 119, 123

120G.3.3.3.1 Host stressed input test procedure

The host stressed input test is summarized in Figure 120G-9. The stressed signal is applied at TP4a and is calibrated at TP4. A reference clock recovery unit (CRU) with a corner frequency of 4 MHz and slope of 20 dB/decade is used to calibrate the stressed signal using the PRBS13Q Pattern (see 120.5.11.2.1). The reference receiver is specified in 120G.5.2. The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern. Sinusoidal jitter is applied with frequency and beak-to-peak annohitude according to each case in Table 120G-9.

120G.3.4.1.1 Module stressed input test procedure

The module stressed input test is summarized in Figure 120G-10. The stressed signal is applied at TP1 and is calibrated at TP1a. A reference CRU with a corner frequency of 4 MHz and slope of 20 dB/decade is used to calibrate the stressed signal using a PRBS13Q pattern.

Eye height vertical eye closure are measured according to the method described in 120G.5.2.

The stressed signal is generated by adding sinusoidal jitter, random jitter, and bounded uncorrelated jitter to a clean pattern, followed by frequency-dependent attenuation. The frequency-dependent attenuator represents the host channel and may be implemented with PCB traces. The amount of applied peak-to-peak sinusoidal jitter used for the module stressed input test is given in Table 120G-9. Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5,3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to assure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated itter should exhibit 20 dB/decade roll-off with a -3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output itter profile given by maximum Jpyre and maximum J4u, and complies with the even-odd jitter specification in Table 120F-1. The target pattern generator 20% to 80% transition time at the input to the test channel in the module stressed input test is 9 ps. The ERL of the test system as measured at TP1 meets the specification given in 120G.3.1.2.

HI/MI SIT CM noise Comment 121, 124

C/ 120G SC 120G.3.4.1.1 P 248 Ran. Adee Cisco L1

124

Comment Type TR Comment Status D

TP2 SIT CM noise

The module stressed eye does not include any common-mode noise, even though a host output is allowed to have some common-mode AC content.

In a real system, the common-mode AC content of the host can degrade the module's (electrical) receiver performance, via the module's allowed termination mismatch or by circuit sensitivity. This will not be detected in the module test without common-mode content, and may not be addressed in design - but it can cause compliant modules to fail with real hosts.

For uncorrelated common mode noise, a sinusoidal source should be used. However, for the host output it is likely that common-mode content is generated by conversion from a differential signal and is therefore correlated to it. In this test, it is suggested that p/n skew is the preferred way to create the allowed common-mode RMS level.

SuggestedRemedy

In another comment I am suggesting to add a wideband noise source to the diagram in Figure 120G-10, between the pattern generator and the frequency-dependent attenuator.

For adding correlated common-mode noise, a skew between the p and n components of the frequency-dependent attenuator should be added and calibrated to create the allowed common-mode RMS level. Alternatively, a sinusoidal common-mode signal can be added, at any frequency up to the Nyquist frequency.

Add the necessary text for calibrating the common mode output at TP1a.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.

Proposed Response Response Status W

PROPOSED REJECT. Resolve using the response to comment #121.

C/ 120G S	C 120G.3.3	3.3.1 P 245	L 42	# 121
Ran, Adee		Cisco		
Comment Type	TR	Comment Status D		TP4 SIT CM noise

The host stressed eye does not include any common-mode noise, even though a module output is allowed to have some common-mode AC content.

In a real system, the common-mode AC content of the module can be converted to differential noise at the host's receiver, via the S21DC of the host input channel, which is not specified at all. This will not be detected in the host test without common-mode content, and may not be addressed in host channel design - but it can cause compliant hosts to fail with real modules.

The common mode noise stress should be a sinusoid at any frequency up to the Nyquist frequency, and should be calibrated at TP4 to have the RMS value allowed for the module output in Table 120G–3.

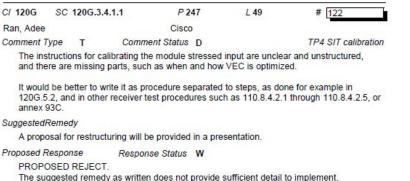
SuggestedRemedy

In another comment I am suggesting to add a wideband noise source to the diagram in Figure 120G-9, between the pattern generator and the HCB.

If the other comment is accepted, an addition for this comment would be to make the noise source also have a common mode component. otherwise, add a common mode noise source in the same location instead.

Add the necessary text for calibrating the common mode output at TP4.

Editorial license is suggested, but if necessary for accepting the comment I can provide candidate text before comment resolution.


Proposed Response Response Status W

PROPOSED REJECT.

Resolve in conjunction with comment #124.

The comment does not provide sufficient justification for the proposed change. The suggested remedy does not provide sufficient detail to implement. A detailed proposal justifying the nature of the stress signal and details how to generate and apply it are required.

HI SIT calibration Comment 122

The suggested remedy as written does not provide sufficient detail to implement Pending task force review of presentation.

No presentation received.

120G.3.4.1.1 Module stressed input test procedure

The module stressed input test is summarized in Figure 120G–10. The stressed signal is applied at TP1 and is calibrated at TP1a. A reference CRU with a corner frequency of 4 MHz and slope of 20 dB/decade is used to calibrate the stressed signal using a PRBS13Q pattern.

Eye height vertical eye closure are measured according to the method described in 120G.5.2.

IEEE P802.3ck Task Force, May 2021

Module input SIT calibration Comment 42

C/ 120G SC 120G.3.4.1 P 247 L17 # 42 120G.3.4.1 Module stressed input test Ghiasi, Ali Ghiasi Quantum/Inphi Comment Type TP4a SIT EH/VEC TR Comment Status D VEC limit of 12 dB and VEO limit of 10 mV results in well constructed host to fail, this was not the case prior to adding timing window of +/-50 mUI. SuggestedRemedy The agreement was not to shift the burden for host or module when we defined new values for VEC and VEO based on timing window ts=+/- 50 mUI. Unfortuntatly the VEC and VEO limits result in host that passed now will fail. Propose new limits for VEO=8 mV and VEC=13.25 to 13.75 dB and see ghiasi 3ck 01 0421 Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

[Editor's note: Changed page from 233 to 247 and subclause from 120G.3.1.5 to

120G.3.4.11

Pending task for review of the following presentation:

https://www.ieee802.org/3/ck/public/adhoc/apr21 21/ghiasi 3ck adhoc 01a 042121.pdf

https://www.ieee802.org/3/ck/public/adhoc/apr21 21/ghiasi 3ck adhoc 01a 042121.pdf

The module stressed input tolerance is measured using the procedure defined in 120G.3.4.1.1. The input shall satisfy the input tolerance with the parameters in Table 120G-11.

Table 120G-11-Module stressed input parameters

Parameter	Value
Applied pk-pk sinusoidal jitter	Table 120G-9
Eye height (target)	10 mV
Vertical eye closure (min)	12 dB
Vertical eye closure (max)	12.5 dB

Host input SIT calibration Comment 208

C/ 120G SC	120G.3.3.3.	1 P2	46	L 13	# 208
Healey, Adam		Broad	dcom Ind	c.	
Comment Type	TR	Comment Status	D		TP4 SIT eye opening

The stressed input signal calibration procedure states that "random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G–7) to result in the eye height for all three eyes given in Table 120G–8 with the setting of the CTLE that minimizes the vertical eye closure." The term "output levels" is ambiguous. It could be interpreted to be "pattern generator output amplitude" or "individual PAM-4 signal levels". This needs to be clarified.

SuggestedRemedy

Change:

"Random jitter and the pattern generator output levels are adjusted (without exceeding the differential peak-to-peak input voltage tolerance specification as shown in Table 120G–7) to result in the eye height for all three eyes given in Table 120G–8 with the setting of the CTLE that minimizes the vertical eye closure."

To:

"Random jitter and the pattern generator differential peak-to-peak output voltage are adjusted so that the height of the smallest eye matches the value in Table 120G-8. The differential peak-to-peak input voltage tolerance given in Table 120G-7 is not exceeded."

Make a similar change to 120G.3.4.1.1 (page 249, line 10).

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Implement the suggested remedy with editorial license. For task force discussion. Draft Amendment to IEEE Std 802.3-2018 IEEE P802.3ck Task Force name Task Force IEEE Draft P802.3ck/D2.0 10th March 2021

may be changed to a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for amplitude calibration and the stressed input test. For the case where the PRBS13Q pattern is used with a common clock, there is at least 31 UI delay between the PRBS13Q patterns on one lane and any other lane, so that the symbols on each lane are not correlated. Any one of these patterns is sufficient as a crosstalk aggressor with all lanes active during the stressed input test.

The stressed input is calibrated using the methodology in 120G.3.2.2.1 using the far-end host channel specified for the module output mode as requested by the host (see 120G.3.2.2). The eye height and vertical eye closure are set to the target values in Table 120G-8 when measured according to the method in 120G.5.2. Meeting the BER requirement using only one module output mode, as requested by the host, is sufficient.

Random jitter and the pattern generator output levels are adjusted (without exceeding the differential peakto-peak input voltage tolerance specification as shown in Table 120G-7) to result in the eye height for all three eyes given in Table 120G-8 with the setting of the CTLE that minimizes the vertical eye closure. Preemphasis capability is likely to be required in the pattern generator to meet this requirement.

The pattern is then changed to Pattern 5, Pattern 3, or a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for the input test which is conducted by inserting the HCB into the host under test. Patterns 3 and 5 are described in Table 124-9.

If the test is performed with pattern 3, the host BER may be calculated using the host's PMA test pattern checker (see 120.5.11.2.2). If the test is performed with pattern 5 or a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal, the BER may be calculated using the host FEC decoder error counters (see 91.6 and 119.3.1), as the number of FEC symbol errors divided by the number of received bits. The number of received bits may be estimated based on the test time.

HI SIT calibration Comment 120

C/ 120G	SC 120G.3.3.3.1	P 245				

Ran, Adee Comment Type F # 120

In the host stressed input test procedure there is a "block" paragraph of 18 lines, which contains some 13 sentences, dealing with the bounded uncorrelated jitter (purpose, definition), calibration of jitter (BUJ and random), and crosstalk signal requirements and calibrations, with great detail and no clear list of requirements. This is painful to read (many times).

Cisco

Comment Status D

L 41

The paragraph should be broken to shorter paragraphs and possibly a list of requirements, to make it more legible, and separate requirements from informative explanations.

SuggestedRemedy

Rephrase and reformat as necessary.

If required, I can create a detailed proposal, but I trust the editors to be able to improve this paragraph by inspection.

Proposed Response Response Status W PROPOSED ACCEPT.

Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The clock source for the PRBS generator is asynchronous to the pattern generator clock source to ensure non-correlation of the jitter. The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a -3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum J_{RMS} and maximum J4u, and complies with the even-odd jitter specification, in Table 120F-1. The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target differential peak-to-peak voltage of 870 mV and transition time of 10 ps as measured at TP1 a (without the use of a reference receiver). The crosstalk signal transition time is calibrated with PRB\$13Q. The pattern may be changed to a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for amplitude calibration and the stressed input test. For the case where the PRB\$130 pattern is used with a common clock, there is at least 31 UI delay between the PRBS13Q patterns on one lane and any other lane, so that the symbols on each lane are not correlated. Any one of these patterns is sufficient as a crosstalk aggressor with all lanes active during the stressed input test.

The following or similar reformatting might address Adee's concern:

Random jitter and bounded uncorrelated jitter are added such that the output of the pattern generator approximates the output jitter profile given by maximum JRMS and maximum J4u, and complies with the even-odd jitter specification, in Table 120F–1.

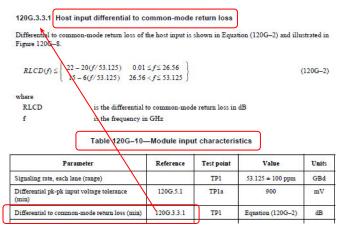
Bounded uncorrelated jitter provides a source of bounded high probability jitter uncorrelated with the signal stream. This jitter stress source may not be present in all stressed pattern generators or bit error ratio testers. It can be generated by driving the pattern generator external jitter modulation input with a filtered PRBS pattern. The PRBS pattern length should be between PRBS7 and PRBS9 with a signaling rate approximately 1/10 of the stressed pattern signaling rate (e.g., 5.3125 GBd). The low-pass filter that operates on the PRBS pattern to generate the bounded uncorrelated jitter should exhibit 20 dB/decade roll-off with a –3 dB corner frequency between 150 MHz and 300 MHz. This value is kept below the upper frequency limit of the pattern generator external modulator input. The clock source for the PRBS generator is asynchronous to the pattern generator clock source to ensure non-correlation of the jitter.

The counter propagating crosstalk signals during calibration of the stressed signal are asynchronous with target differential peak-to-peak voltage of 870 mV and transition time of 10 ps as measured at TP1a (without the use of a reference receiver). The crosstalk signal transition time is calibrated with PRBS13Q. The pattern may be changed to a valid 100GBASE-R, 200GBASE-R, or 400GBASE-R signal for amplitude calibration and the stressed input test. For the case where the PRBS13Q pattern is used with a common clock, there is at least 31 UI delay between the PRBS13Q patterns on one lane and any other lane, so that the symbols on each lane are not correlated. Any one of these patterns is sufficient as a crosstalk aggressor with all lanes active during the stressed input test.

MI RLCD Comment 181

12								
C/ 120G	SC	120G.3.	1.1	P 237	L 36	#	181	
Dawe, Pie	rs			Nvidia				
Comment	Туре	E	Comme	ent Status D			TP1	RLCD

In other specs such as CEI-56G-VSR-PAM4 and CEI-56G-VSR-PAM4, the output differential to common-mode return loss is 3 dB better than the input common-mode to differential mode return loss at low frequency, for a good reason, but in this annex they are the same.


SuggestedRemedy

Unless we find a reason not to, offset the specs in the usual way.

Proposed Response Response Status W

PROPOSED REJECT.

The comment does not provide sufficient justification for the proposed changes nor does the suggested remedy provide sufficient detail to implement.

IEEE P802.3ck Task Force, May 2021

. 120G.3.1.1 Host output common-mode to differential return loss

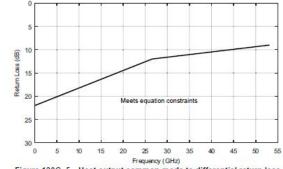
39

40

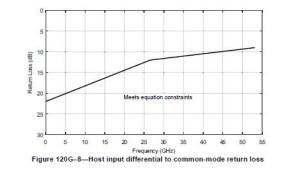
41

42

43


...

Common-mode to differential return loss of the host output is shown in Equation (120G–1) and illustrated in Figure 120G–5.


$$RLDC(f) \leq \left\{ \begin{array}{cc} 22 - 20(f/53.125) & 0.01 \leq f \leq 26.56 \\ 15 - 6(f/53.125) & 26.56 < f \leq 53.125 \end{array} \right\}$$
(120G-1)

where RLI f

RLDC is the common-mode to differential return loss in dB f is the frequency in GHz

Precoding Comment #234

 C/ 120G
 SC 120G.1
 P 235
 L 38
 # 234

 Dawe, Piers
 Nvidia

Comment Type TR Comment Status D

Up to now, the optical PMD channels have not needed a very strong DFE, and the C2M loss (10 dB for C2M CAUI-4, 10.2 for 200GAUI-4 C2M, 16 for 400GAUI-4) is low enough that CR and KR PMDs don't need a very strong DFE when used as C2M. Therefore, we never have precoding on C2M at 50G/lane - simple. At 100G/lane, links such as active copper cables will benefit from a very strong DFE in the receiver in the cable end that's receiving from a higher loss in the cable. 802.3 enables such active cables via the C2M specs; up until now there was nothing more to say, so they don't get a mention in 802.3. Adding precoding after the signal has been serialised is best avoided, so it should be added in the host, so for the first time, there is something that 802.3 should do specifically about active cables.

precoding

SuggestedRemedy

Allow optional precoding abilities in 100G/lane C2M transmitters and receivers in the host. Add MDIO registers to advertise these abilities and to enable them.

Proposed Response Response Status W

PROPOSED REJECT.

Precoding if used is added and removed by the PMA at each end of a physical link as necessary. Similarly, an active cable can add precoding at the transmitter at one end and remove the precoding at the other end.

Precoding must be enabled (or disabled) on both Tx and Rx in the same direction; this is coordinated using training for CR/KR or by station management for C2C. This cannot be done with C2M and active cable (end-to end) because neither AN nor link training are available. Applying precoding internally within an active cable is still possible.

Nothing to point to since it is addition of a new feature.

Module output modes Comments 56, 175, 223

120G.3.2.1 Module output modes

The module output shall support two modes: short and long. The means of controlling the module output mode is implementation dependent. For each output mode, the module shall meet the requirements for eye height (min) and vertical eye closure (max) in Table 120G-3 for both near-end and far-end measurements (see 120G.3.2.2).

One method for configuring the module output mode is to configure the module for a particular host electrical interface. Mapping of the combination of IEEE 802.3 interface type and module output mode to a host electrical interface may be determined from Table 120G-4.

Table 120G-4-Module output mode mapping

IEEE 802.3 interface type	Module output mode	Host electrical interface
100GAUI-1 C2M	short	100GAUI-1-S C2M
100GAUI-1 C2M	long	100GAUI-1-L C2M
200GAUI-2 C2M	short	200GAUI-2-S C2M
200GAUI-2 C2M	long	200GAUI-2-L C2M
400GAUI-4 C2M	short	400GAUI-4-S C2M
400GAUI-4 C2M	long	400GAUI-4-L C2M

C/ 120G	SC	120G.3.2.1	P 240	L 27	# 175
Dawe, Pie	rs		Nvidia		2
Comment	Туре	Т	Comment Status D		wording
The m	odule d	output doesn	I't have to "support" two mo	odes (e.g. receiv	re, co-operate, enable,

or similar), it has to actually do them. They are abilities of the module.

SuggestedRemedy

Change "The module output shall support two modes: short and long." to "There are two module output modes: short and long."

Proposed Response Response Status W

PROPOSED REJECT.

The proposed changes to wording do not improve the quality of the draft.

C/ 120G	SC	120G.3.2.	.1 /	P 240	L 27	# 56	5
Ghiasi, Ali			Gł	niasi Quant	tum/Inphi	1.9	
Comment 7 Short a		T ng are not	Comment Stat	us D			wording
SuggestedF Please		-	nd long with "lowe	r loss host	s" an <mark>d "higher I</mark>	oss hosts"	
The inte 120G.3	OSED erpret	REJECT.	Response Statu lort and long mode sted remedy is no	es is implic			
	C 12	0G.3.2.1	P 2	40	L 37	# 223	
120G S							
120 G S /u, Mau-Lin			Media	aTek Inc.			

L C2M, and etc. defined for "Host electrical interface". However, no definitions of those "Host electrical interface" were found in the whole specification. Based on that, the information provided by this Table may be confusing for the readers.

SuggestedRemedy

We shall either add the definitions of 100GAUI-1-S & 100GAUI-1-L C2M or remove Table 120G-4.

Proposed Response Response Status W

PROPOSED REJECT.

Table 120G-4 defines what those labels mean.

Module output modes Comment 40

120G.3.2.1 Module output modes

The module output shall support two modes: short and long. The means of controlling the module output mode is implementation dependent. For each output mode, the module shall meet the requirements for eye height (min) and vertical eye closure (max) in Table 120G-3 for both near-end and far-end measurements (see 120G.3.2.2).

One method for configuring the module output mode is to configure the module for a particular host electrical interface. Mapping of the combination of IEEE 802.3 interface type and module output mode to a host electrical interface may be determined from Table 120G-4.

Table 120G-4-Module output mode mapping

IEEE 802.3 interface type	Module output mode	Host electrical interface
100GAUI-1 C2M	short	100GAUI-1-S C2M
100GAUI-1 C2M	long	100GAUI-1-L C2M
200GAUI-2 C2M	short	200GAUI-2-S C2M
200GAUI-2 C2M	long	200GAUI-2-L C2M
400GAUI-4 C2M	short	400GAUT-4-S C2M
400GAUI-4 C2M	long	400GAUI-4-L C2M

C/ 120G	SC 120G.3.2.	1 P2	40	L 37	#	40
Ghiasi, Ali		Ghia	si Quantu	um/Inphi		
Comment T	ype TR	Comment Status	D			reference
Table 1	20G-4 defines A	AUI short and long bu	ut with pr	oper reference		
Suggested	Remedy					
Please	reference table	120G-5				
Proposed R	Response	Response Status	w			
PROPO	DSED REJECT.					

Short and long modes are defined in the first paragraph of 120G.3.2.1. Table 120G-5 provides parameters for the measurement of EH and VEC at the module output when configured for short or long mode.

120G.3.2.2.1 Near-end and far-end eye measurement methodology

The signal measured at TP4 is first convolved with a host channel. The host channel is the host receiver printed circuit board (PCB) signal path $S^{(HOSPR)}$ defined in 162.11.7.1.1 with the exceptions that the length z_p for each test is provided in Table 120G–5, and C₀ and C₁ are both 0 nF. The eye height and vertical eye closure are measured using the method in 120G.5.2.

Table 120G-5-PCB length for module output measurements

Module output mode	Host channel type	PCB length, zp (mm)
Short	near-end	0
Short	far-end	160
Long	near-end	80
Long	far-end	244.7

Terminology Comment 20

C/ 120G	SC	120G.3.1.5	P 2	39	L 8	# 20	
Brown, Ma	tt		Huaw	vei		1	
Comment	Туре	ER	Comment Status	D			(bucket3)
Howev acrony	er, the m was	acronym is	ye closure (VEC) is rarely used in 120 in 120E, where the ame only.	G and th	e <mark>full name is r</mark>	normally used. S	ince this
Suggested	Reme	dy					
	tely, v	where approp	acronym VEC in 1 priate, replace all ir		of "vertical eye	e closure" with th	e
Proposed F	Respo	nse	Response Status	W			
With e	ditoria	l license, ren	I PRINCIPLE. hove all instances ' or deleting "VEC"	of "VEC" as appr	in 120G by eit opriate.	her replacing "V	EC"
Revi	sed 1	proposed	response:				

PROPOSED ACCEPT IN PRINCIPLE.

With editorial license, replace all instances of "vertical eye closure" with "VEC", where appropriate.

120G.3.1.5 Host output eye height and vertical eye closure

Figure 120G-6 depicts an example host output eye height and vertical eye closure (VEC) test configuration. Host output eye height and vertical eye closure are measured at TP1a using compliance boards defined in 120G.5.3. Eye height and vertical eye opening are measured according to the method described in 120G.5.2.

Terminology Comment 14

C/ 120G	SC 1	20G.3.1	P2	37	L 17	# 14	1
Brown, Mat	tt		Huaw	vei		35	
Comment 7	ype	ER	Comment Status	D		(bucket3)
	ary to qu		d by the measurem being "differential"				as
Suggestedi	Remedy						
Change	e "Eye h	eight, diff	eren <mark>tial</mark> (min)" to "E	ye heig	ht (min)"		
-							

Proposed Response Response Status W

PROPOSED ACCEPT.

Table 120G-1-Host output characteristics at TP1a

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		53.125 ± 50 ppm ^a	GBd
DC common-mode output voltage (max)	120G.5.1	2.8	v
DC common-mode output voltage (min)	120G.5.1	-0.3	v
Single-ended output voltage (max)	120G.5.1	3.3	v
Single-ended output voltage (min)	120G.5.1	-0.4	v
AC common-mode RMS output voltage (max)	120G.5.1	17.5	mV
Differential peak-to-peak output voltage (max) Transmitter disabled Transmitter enabled	120G.5.1	35 870	mV
Eye height, differential (min)	120G.3.1.5	10	mV
Vertical eye closure (max)	120G.3.1.5	12	dB
Common-mode to differential return loss (min)	120G.3.1.1	Equation (120G-1)	dB
Effective return loss, ERL (min)	120G.3.1.2	7.3	dB
Differential termination mismatch (max)	120G.3.1.3	10	96
Transition time (min, 20% to 80%)	120G.3.1.4	10	ps

^aFor a PMA in the same package as the PCS sublayer. In other cases, the signaling rate is derived from the signaling rate presented to the PMA input lanes (see Figure 135–3 and Figure 120–3) by the adjacent PMA or FEC sublayers.