Feedback coefficient constraints

(comment #205)

Adam Healey Broadcom Inc. April 2021 (r0)

Contributors

- Raj Hegde, Broadcom Inc.
- Bing Zhong, Broadcom Inc.

Overview

- In Clauses 162 and 163, reference receiver feedback coefficient b(n) is allowed to have a maximum value of 0.2 for n = 3 to 12
- Channels observed to meet minimum Channel Operating Margin (COM) requirements produce much smaller values for later coefficients
- The constraint may have initially been set for sake of simplicity, but more complicated constraints have since been added
 - Separate lower and upper limits
 - Separate limits for $n = 1, 2, and 3 \dots N_b$
- Limit for larger *n* should be tightened so that unexpected channels have more difficulty satisfying the COM limit
- Consider the coefficient profiles for models and measurements provided to the <u>Task Force</u>

Backplane and cable (TP0-TP5) channels

101 channels with COM > 2.5 dB, 2 tests (package transmission line length) per channel, 202 coefficient sets

Cable assembly (TP1-TP4) channels

17 channels with COM \geq 2.5 dB, 2 tests (package transmission line length) per channel, specified host trace model added, <u>34 coefficient sets</u>

Summary

• Propose the following changes to Table 162–18 and Table 163–10

Parameter	Symbol	Value	Units
Normalized DFE coefficient maximum limit for $n = 1$ for $n = 2$ for $n = 3$ to $6N_{\overline{p}}$ for $n = 7$ to $N_{\overline{b}}$	bb _{max} (n)	0.85 0.3 0.2 <u>0.1</u>	

 No impact to compliance of channels studied (coefficients are already within the proposed limits)