Adjustment of Transition Time for RX Interference Tolerance Test in KR and C2C (Comment #138)

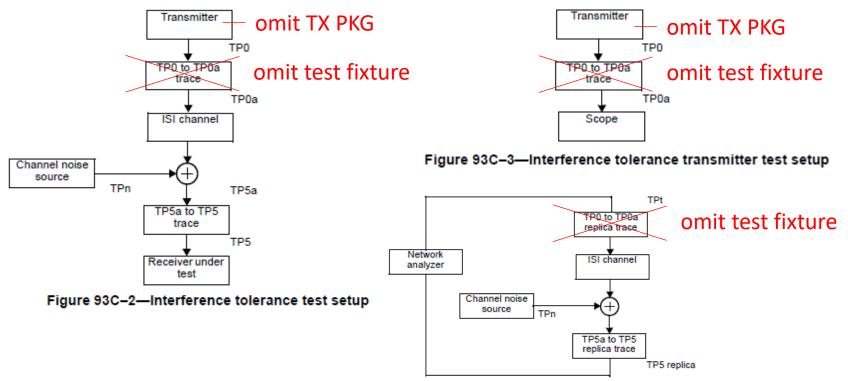
> Yasuo Hidaka, Credo Junqing (Phil) Sun, Credo

IEEE P802.3ck Task Force May, 2021

Supporters

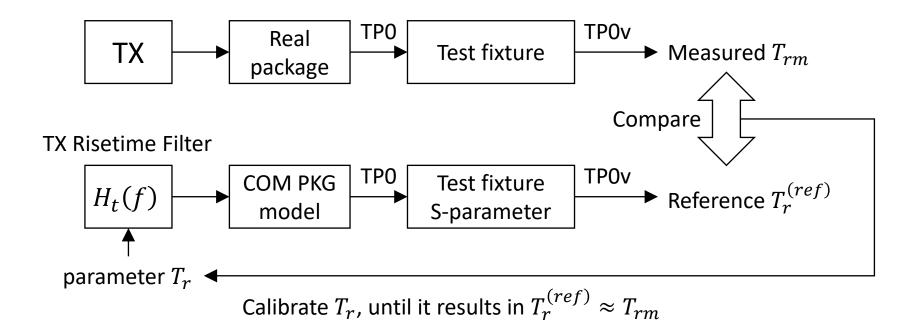
- Howard Heck, Intel
- Richard Mellitz, Samtec
- Geoff Zhang, Xilinx
- Rick Rabinovich, Keysight
- Upen Reddy Kareti, Cisco
- ✤ Ali Ghiasi, Ghiasi Quantum
- ✤ Adee Ran, Cisco
- Mike Dudek, Marvell

Comment #138 (overview)


Clause 163.9.3.4 Receiver interference tolerance, P 192

- e) In the calculation of COM, if the transmitter is a device with known S-parameters and transition time, these parameters should be used instead of the transmitter package model in 93A.1.2. If a calibrated instrument-grade transmitter is used, the transmitter device package model $S^{(p)}$ is omitted from Equation (93A-3) in the calculation of COM. The filtered voltage transfer function $H^{(k)}(f)$ calculated in Equation (93A-19) uses the filter $H_t(f)$ defined by Equation (93A-46), where T_r is calculated as $T_r = 1.09 \times T_{rm}$ -4.32 ps and T_{rm} is the measured 20% to 80% transition time of the signal at TPOV. T_{rm} is measured using the method in 120E.3.1.5. T_{rm} is measured with the transmitter equalizer turned off.
 - Equation " $T_r = 1.09 \times T_{rm} 4.32 ps$ " is not valid any more.
 - When TX is a BERT, we can skip calibration of T_r by omitting test fixture from TP0 to TP0v.
 - When TX is not a BERT nor known S-parameters and transition time, T_r at signal source must be calibrated against T_{rm} measured at TPOv through test fixture.

No change when TX is a device with known S-parameters and transition time. IEEE P802.3ck Task Force


When TX is a BERT

- In this case, T_r at the COM signal source (=TP0) is directly measurable.
- Omitting TPO to TPOv (replica) trace (in addition to package model) and skipping calibration of T_r is possible, simpler and more accurate than calibrating T_r at the COM signal source against T_{rm} measured at TPOv.

When TX is not a BERT nor known S-parameters and transition time

• T_r at the signal source must be calibrated so that reference transition time $T_r^{(ref)}$ at TPOv matches to the measured transition time T_{rm} at TPOv.

Outline of Calibration of Tr in Equation (93A-46)

- 1. Measure T_{rm} at TPOv using the method in 120E.3.1.5.
- 2. Calibrate T_r in Equation (93A-46) so that $T_r^{(ref)} \approx T_{rm}$.

Here, $T_r^{(ref)}$ is the reference transition time at TPOv according to a new subcaluse 163A.3.1.X calculated from the following parameter and functions (see slide 10 for detail):

- Estimated value of T_r .
- TX risetime filter $H_t(f)$ (Equation (93A-46)).
- Reference device and package model $S^{(tp)}(f)$.
- S-parameter of test fixture $S^{(fixt)}(f)$.

For $S^{(tp)}(f)$, use the longer trace length for consistency with the definition of $v_f^{(ref)}$. Alternatively, we may calculate $v_f^{(ref)}$ and calibrate T_r for each trace length.

Text change to 163.9.3.4 and 120F.3.2.3

• Change step e in clause 163.9.3.4 as follows:

In the calculation of COM, if the transmitter is a device with known S-parameters and transition time T_r , these parameters should be used instead of the transmitter package model in 93A.1.2. If a calibrated instrument-grade transmitter is used, the transmitter device package model $S^{(tp)}$ is omitted from Equation (93A–3), Figure 163-X replaces Figure 93C-2, Figure 163-Y replaces Figure 93C-3, Figure 163-Z replaces Figure 93C-4, and T_r in Equation (93A-46) is same as the measured transition time T_{rm} of the signal source at TPO using the test setup in Figure 163-Y. If the transmitter is not a device with known S-parameters and transition time nor a calibrated instrument-grade transmitter, T_r in Equation (93A-46) is calibrated per Figure 163-W so that the reference transition time $T_r^{(ref)}$ calculated according to 163A.3.1.X matches to the measured transition time T_{rm} of the signal at TPOv using the test setup in Figure 93C-3 including TPO to TPOv trace. in the calculation of COM. The filtered voltage transfer function $H^{(k)}(f)$ calculated in Equation (93A-19) uses the filter $H_{I}(f)$ defined by Equation (93A-46), where T_{I} is calculated as $T_r = 1.09 \times T_{rm} - 4.32$ ps and T_{rm} is the measured 20% to 80% transition time at TPOv. The measured transition time T_{rm} is measured with the transmitter equalizer turned off and using the method in 120E.3.1.5. T_{rest} is measured with the transmitter equalizer turned off.

• Apply the same change as above to 120F.3.2.3 step d.

Proposed figures in 163.9.3.4

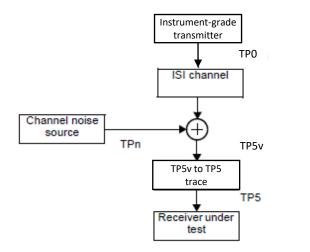


Figure 163-X – Interference tolerance test setup using an instrument-grade transmitter

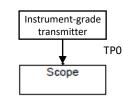


Figure 163-Y – Interference tolerance transmitter test setup for an instrument-grade transmitter

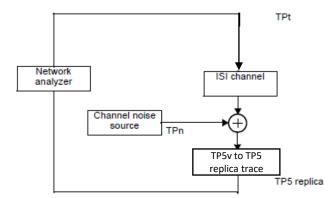


Figure 163-Z – Interference tolerance channel s-parameter test setup for an instrument-grade transmitter

Proposed figures in 163.9.3.4 (continued)

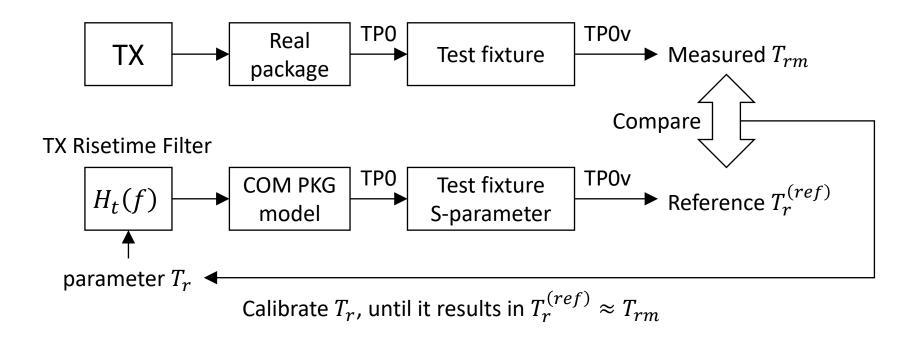


Figure 163-W – Calibration of risetime T_r at signal source against measured transition time T_{rm}

Proposed text of a new sub clause in 163A

163A.3.1.X Transition time reference value

Obtain the output pulse response, h(t), using Equation (93A-23) and Equation (93A-24) with $H^{(0)}(f)$ from Equation (163A-2), where A_t and T_b are specified by the clause that invokes this method.

Obtain the output step response, u(t), using Equation (163A-Y).

From the output step response, find the time to reach 20% and 80% of the reference steady-state voltage $v_f^{(ref)}$ as T_{20} and T_{80} , respectively.

From T_{20} and T_{80} , calculate the reference 20% to 80% transition time $T_r^{(ref)}$ using Equation (163A-X).

$$T_r^{(ref)} = T_{80} - T_{20}$$
(163A-X)
$$u(t) = \sum_{i=0}^{\infty} h(t - i \times T_b)$$
(163A-Y)

 T_{80} is a solution of $u(t) = 0.8 \times v_f^{(ref)}$ in terms of t

$$T_{20}$$
 is a solution of $u(t) = 0.2 \times v_f^{(ref)}$ in terms of t

where

$T_r^{(ref)}$	is the reference 20% to 80% transition time
u(t)	is the output step response
T ₈₀	is the time to reach 80% of the reference steady-state voltage
<i>T</i> ₂₀	is the time to reach 20% of the reference steady-state voltage
T _b	is the unit interval in ps
$v_f^{(ref)}$	is the reference steady-state voltage calculated by Equation (163A-3)

If the invoking clause lists more than one set of reference package parameters, the calculation in Equation (163A-Y) is performed with the longer package trace length.