Proposed N_p Change for SNDR Measurement in CR (Comment #228)

Mau-Lin Wu, MediaTek

For IEEE 802.3ck

Outlines

- Issues
- Recap
- Proposal

Issues – Different N_p in Clause 162 & 163

Clause 162

- 162.9.4.3.3 Test channel calibration (for RX ITOL)
- f) The SNR_{TX} value that results in the required COM value for the test is calculated. The injected noise (see 162.9.4.3.4) is set such that the SNDR matches the calculated SNR_{TX} value. SNDR is measured at the Tx test reference using the procedure in 120D.3.1.6, with the exception that the linear fit in 120D.3.1.3 is performed with a pulse length (N_D) of 15 UI.

Issues

- For TX SNDR calculation, N_p shall be long enough to cover all 'linear response', such as reflection due to package length
- $-N_p$ = 15 is too small a value to cover the far-away 'linear' reflection for 100GBASE-CR1

Clause 163

- 163.9.3.4 Receiver interference tolerance
- f) For the calculation of test channel COM, the following parameters are based on values measured from the test transmitter. The parameter $SNR_{\rm TX}$ is set to the measured value of SNDR with $N_p=29$, the parameter $R_{\rm LM}$ is set to the measured value of $R_{\rm LM}$, and the parameters $A_{\rm DD}$ and $\sigma_{\rm RJ}$ are calculated from the measured values of J3u and J_{RMS} using Equation (163–2) and Equation (163–3) respectively.
 - N_p = 29 was proposed in li 3ck 01 1020
 - To consider TX + RX EQ
 capability to decide N_p value

3

P802.3ck

Recap from li_3ck_01_1020

- The intent was to change $N_p = 29$ for both of KR & CR
 - Any how, no change had been applied to CR
- Proposal
 - Change N_p = 29 for CR

Courtesy of Mike Li, Mike Dudek, Yasuo Hidaka

RX ITOL Np Setting Principles

- Np should be set equivalent to the reference TX + RX EQ capability
- Dp should equal to the pre-tap length set in the COM + 1
- For KR and CR, a fixed reference RX equalization capability is difficult
 to establish, due to the fix + floating DFE tap architecture in the
 reference RX, Np = 29 is chosen in light of the CEI-112G-LR-PAM4

RX ITOL Np Setting Proposal (in red) and Comparisons

Parameter	TX Np	RX Np	TX Dp	RX Dp	Notes
802.3ck (KR)	200	29	4	4	TX has no SNR ISI
802.3ck (C2C)	200	11	4	4	TX has no SNR ISI
802.3cd (KR)	200	13	2	2	TX has no SNR ISI
802.3bs (C2C)	200	13	2	2	TX has SNR ISI
CEI-112G-LR-PAM4	29	29	4	4	TX has no SNR ISI
CEI-112G-MR-PAM4	18	18	3	3	TX has no SNR ISI

Proposal (Comment #288)

- Change N_p = 29 in step f) in 162.9.4.3.3
 - f) The SNR_{TX} value that results in the required COM value for the test is calculated. The injected noise (see 162.9.4.3.4) is set such that the SNDR matches the calculated SNR_{TX} value. SNDR is measured at the Tx test reference using the procedure in 120D.3.1.6, with the exception that the linear fit in 120D.3.1.3 is performed with a pulse length (N_p) of 15 UI.

Thank You

