Selection of edges for jitter measurements on PRBS9Q pattern

This compares two ways of selecting edges on which to measure jitter (J3u, JRMS) in a PRBS9Q pattern.

This is in support of Yasuo Hidaka's comment and to align with li_3ck_01_0521

Pavel Zivny (Tektronix), Yasuo Hidaka (Credo), Evan Smith, Muhammad Saad Chughtai; (Tektronix...)

Supporters, changes from version a.

- Phil Sun, Credo

Changes from version a:

- authors; list of supporters
- Comments in italics underlined (1 line on page 3, one line on page 5)

Background

- The measurements of J3U and $\mathrm{J}_{\text {RMS }}$ on PRBS13Q edge selection is reasonably easy - pattern segments with isolated edge are available for all 12 edges
- In case of PRBS9Q few edges are well isolated hence the edge selection is less simple
- Currently this problem is of concern for EOJ; this study was so far inconclusive hence not presented here
- There are two proposals for edge selection on PRBS9Q; one by Zivny-Hidaka (ZH method), one by Mike Li (L method)
- The Li method is given in https://www.ieee802.org/3/ck/public/21 05/li 3ck 01 0521.pdf
- Zivny-Hidaki selection includes additional consideration for dispersion in copper - intended to reduce the sensitivity to noise and/or to slow slope of the edge
- This work compares the two edge selections

Edges selected in the two methods

- the ZH method:

step range symbols index of transition
R01:[195:202] : 20001302198
R02 : [275:282] : 20002312278
R03 : [260:267] : 10003311263
F10 : [257:264] : 11110003260
R12:[265:272]:31112311 268
R13 : [166:173] : 01113312169
F20 : [322:329] : 22220012325
F21:[466:473] : 12221011469
R23:[210:217]: 32223303213
F30 : [002:009] : 33330011005
F31 : [107:114] : 03331012110
F32 : [401:408] : 03332002404

- the L method:

step	range...from to		symbols	index
R03	260	266	1000331	263
F30	511	8	233333001	5
R12	464	470	3112221	466
F21	254	261	12211110	256
R01	503	508	200113	505
F10	256	264	211110003	260
R23	210	216	3222330	213
F32	507	1	133223	509
R02	63	70	20022223	65
F20	321	328	12222001	325
R13	166	172	111331	169
F31	263	269	331112	265

Compare the two methods on both a clean waveform and a noisy waveform

-Reference: PRBS13Q waveform, 12 edges not yet accomplished

- Method ZH and method L on:
- Clean PRBS9Q waveform
- Noisy SNR waveform
- SNR impaired intentionally by using $1 / 2$ of digitizing range

Results - two methods compared for $\mathrm{J}_{\text {RMS }}$ and J3U

- Both methods give a similar result
- The L method rises somewhat faster when the signal's noise increases, i.e. it is more noise sensitive
- We recommend the ZH method

Backup: the rationale for method ZH

Due to the nature of electrical dispersion, for electrical signaling we need not worry much about the symbols after the edge of interest. Here's the compare as an example: when we need a transition from A->B, do we:
consider xxxAABBxxxx, or should we instead
consider xxAAABxxx
in other words, if on electrical signal we only worry about positive dispersion, we don't worry much about the B symbol having a run length >1.

So this is the rule on selecting $x x A A A B x x x$ vs. $x x A A B B x x$.
$2^{\text {nd }}$ rule:
in case like the above there are two $A A A B$ sequences within the pattern. Which one to select?
I We select the one where the B symbol is not followed by an inversion of slope (from the AàB slope).
Hence we would not choose
R1: [384:394] 3030001003
Since after the 01 the next immediate transition is 10 . So the 1 is a runt.
This second rule is simply to acknowledge that with a bit of ISI the runts might be harder to identify.

Questions?

- Thank you

