Measuring Common Mode Voltage (ref Comment #123)

Richard Mellitz, Samtec

July 2021

Supporters

□ John Calvin, Keysight Technologies

□ Adee Ran, Cisco

Agenda

- □ Background references
- □ Classification of CM sources
- □ Examples of histogram and power spectral considerations of CM
- **CM** Measurement recommendation

Follow on to Adee Ran's work in ran_3ck_adhoc_01_063021 "AC common mode considerations for C2M"

Previous work on CM specs

Presentation name	Title	Content
ran 3ck adhoc 01 010621	Analysis of Common-Mode Signal at the Receiver Input	Assessment of CM levels at RX side for CR; need for CM stress test
mellitz 3ck adhoc 01 121620	Common Mode (CM) Noise: Next Steps	CM noise from crosstalk
ran 3ck 04 1020	Considerations for TX AC Common-Mode Specifications	Correlated (mode conversion) vs uncorrelated (CM noise) effect
wu 3ck 01 1020	AC Common Mode Spec by TP0v	Proposal for CM AC specification at TPOv (KR)
wu_3ck_adhoc_01_090920	AC Common Mode Noise and Common Mode to Differential Conversion Exploration	Conversion loss metrics (IDCR/INCM) analysis for CR/KR
ghiasi 3ck 03a 0720, ghiasi 3ck 03 0720	Differential, Conversion, and Common Mode Return Losses (Return Loss and ERL Limits for C2M and CR)	Sources of CM; s-parameter results but no RMS results
wu 3ck 01a 0720	AC common mode and SDC21 limits	Analysis of uncorrelated CM noise effect on COM (CR/KR)
mellitz 3ck adhoc 01 062420, mellitz 3ck adhoc 01 061720	Common Mode: Fact or Fiction	Proposal to add Tx AC CM conversion term into COM à la SNR _{TX}

Coherent Sources of Common Mode (CM)

□ Skew

+/- Waveform clip: 106.6 Gb/s PAM4 signaling

-0.2

□ Signal Imbalance

Asynchronous Sources of Common Mode (CM)

106.6 Gb/s PAM4 CM and DM waveforms

IEEE 802.3 100 Gb/s, 200 Gb/s, and 400 Gb/s Electrical Interfaces Task Force

External Noise

Full S-parameter and DM Simulations Can Agree

These two produce the same results

Modal interactions for skew and imbalance show up as pulse height and P_{max}/V_f reduction

□ Skew at left is 5 ps

Impedance imbalance is 10%

□ There is also a likely impact to SNDR since Pmax is reduced and σ_n is likely to be the same.

Conclusion: CM noise is at least partially included in other Tx measurements

Problem: Coherent and Asynchronous are lump in a traditional AC CM measurement

□ Above is a simple mode for measuring DM and CM waveforms

□ The frequency content, power spectral density (PSD), and statistics are different for skew, imbalance, and asynchronous CM noise.

For this presentation we will look at TPO TPOv is follow-on work

CM (@TPO) noise histograms and PSDs are very different

The CM measurement contain all the previously mentioned impairments

Example on the left impairments in package model

- 5 ps skew
- 10% impedance imbalance
- 30 mV AWGN at TP0

□ The problems is like unscrambling an egg ☺

Suggestion

□ 120D.3.1.6:

- "Using the same configuration of the transmitter equalizer, measure the RMS deviation from the mean voltage at a fixed low-slope point in runs of at least 6 consecutive identical PAM4 symbols. PRBS13Q includes such a run for each of the PAM4 levels. The average of the four measurements is denoted as σ_n ."
- Consider: the CM and DM signal are time synchronized because both are combines of "A" and "B".
- □ Measure AC common-mode (CM) output voltage σ_{AC-CM} using the following procedure.
 - "Using the same configuration of the transmitter equalizer, measure the RMS deviation from the mean of the CM voltage at a time point corresponding to where the DM signal is at a fixed low-slope point in runs of at least 6 consecutive identical PAM4 symbols. PRBS13Q includes such a run for each of the PAM4 levels. The average of the four measurements is denoted as σ_{AC-CM} ."
- A sufficiently large number of repeats of the data pattern is required.

Additional Thoughts

- □ Much of the AC RMS may be expected to be frequency lower than $f_b/2$.
- Using the Tukey window described in 93A–58a with f_b set to 2.675GHz (f_b/20) and f_r set 2.5412 GHz (.95 f_b/20) sufficiently large number of repeats of the data pattern is required
- AC CM RMS is 8.5 mv with filter and 30 mV without filter.
- Using the whole CM waveform (no skew, no imbalance, AWGN only)

Recommendation

□ Specific AC Common mode voltage as on slide 13

Discussion: Filtering