Phase-weighted distribution for calculating C2M eye parameters (in support of comment #39)

Adee Ran, Cisco

Supporters

• Rich Mellitz, Samtec

Problem statement

- Changing the eye measurement to a region of $t_s \pm 0.05$ UI resulted in significant degradation of EH/VEC
 - As demonstrated in <u>calvin 3ck adhoc 01 063021</u>, with instrument-grade transmitter with high-loss channel, closing the calibration loop is a challenge
 - it may also be challenging to build/tune real transmitters to meet the current specification

Possible solutions

- Move the EH and VEC limits/targets to compensate for the degradation
 - Comments #61, #68 propose moving from 12 dB / 15 mV to 13 dB/8.5 mV
 - This can make the current signals (transmitters+channel combinations) pass, but open the door to fast-noisy ones (where the eye is closed due to noise/jitter)
 - It takes the margin from the receiver (which would need to handle "rectangular eye", unequalizable signals)
- Change the method to "a 10-cornered mask" (comment #106)
 - The eye shape expected from a band-limited transmitter is indeed not rectangular
 - However, the current methodology (120G.5.2) is not based on a mask it's unclear how this idea can be implemented
- The proposal in this presentation is similar to a "shaped mask" but based on the 120G.5.2 methodology
 - It is also aligned with reasonable receiver behavior

Current reference receiver effect

- The reference receiver includes CTLE and DFE
 - Both are adjustable
 - DFE is optimized based on the fitted pulse and maximizes the vertical opening at t_s
- The eye metrics are then taken from samples collected at t_s±0.05 UI with equal weight to all phases
- This matches a hypothetical receiver which opens the eye at t_s, but then samples anywhere within t_s±0.05 UI with equal probability
 - But it is not a likely behavior of a real receiver (see next slide)
- The 3 eyes are more vertically closed as the distance from t_s is increased (as shown) so the 1e-5 limit is governed by the outer phases, and the larger vertical opening at t_s has little effect
- The 15 mV/12 dB specs at BER=1e-5 create the margin for real receivers (similar to the 3 dB COM)
 - But 12 dB VEC is a small margin! 13 dB is even worse

P802.3ck VEC centering (BoxCar) around ts

The signal above passes VEC – but high-loss TP1a eye fails

Test Point	Configuration	Insertion Loss	Meas. EH SJ = 50mUl	Meas. VEC SJ = 50mUI	Spec. EH SJ = 50mUI	Spec. VEC SJ = 50mUI
TP4	Near-end short	6.6 dB	16.25 mV	11.6 dB	15 mV	12.5 dB
TP4	Far-end long	17.1 dB	15.45 mV	9 dB	15 mV	12.5 dB
TP1a	High Loss	16.4 dB	13.1 mV	13.5 dB	10 mV	12.5 dB*
					10	

(Source: calvin 3ck adhoc 01 063021 slides 3-4)

Expected behavior of real receivers

- A real receiver has a CDR which selects a mean sampling phase ("t_s") based on some criterion
 - There is some distribution of the sampling phase around t_s , but it is not uniform Gaussian-like is more likely
- Ideally the equalization is selected to optimize the BER given t_s and the distribution
 - In practice it may be sub-optimal for various reasons
 - Non-ideality in equalization and phase selection can use the VEC/EH margin created by the reference receiver
- We can expect a receiver to spend more time near t_s than away from it
 - The infrequent samples that are away, will have less vertical margin and higher BER
 - The aggregate BER is less affected by the "outer phases" than the "inner phases"
 - Thus the current "equal weighted" reference receiver is too pessimistic
- This behavior can be emulated by per-phase weighting (conditional probability) of the sampled voltage in the reference receiver
 - If a transmitter has a "diamond shaped eye" or similar (as in slide 5), its calculated VEC/EH will be improved by this weighting
 - If the Tx eye shape is rectangular (governed by noise/jitter rather than ISI) it will not change the numbers
 - Expected to help good real transmitters meet the EH and VEC requirements and enable reasonable stressed eye creation

Illustration

Assume the scope collects a set of samples (t_i, v_i) as illustrated on the right.

The red samples should be weighted down compared to the green samples.

The probability of seeing a voltage level V<V $_{\rm th}$ is the total probability created by

- the conditional probabilities of seeing V<V_{th} at each phase (per-phase PDF),
- each weighted by the probability of being at that phase:

$$Prob(v < V_{th}) = \int_{t_{min}}^{t_{max}} prob(v < V_{th}|t) \cdot w(t) dt$$

Where w(t) is the probability of sampling at t (characteristic of the reference receiver).

What is the expected phase distribution?

- It is characteristic of a CDR in the Rx, not of the Tx
- It is not a representation of scope jitter (which is expected to be lower)
- We have not addressed Rx jitter explicitly in past specifications and the proposed distribution is not expected to become a specification. Its use for receiver design/testing is outside the scope of the standard.
- Proposed weighting function is a truncated Gaussian with a standard deviation of 0.015 UI. Outside of the ±50 mUI window the weight is 0. This gives a minimum weight of ~1.5e-3 at ±50 mUI away from t_s.
 - It does not mean the BER covered by the eye is 1.5e-3! The EH/VEC are still from the CDFs at 1e-5.
 - Truncation to t_s±50 mUI means the eye outside this region can be completely closed without penalizing the transmitter – it is the receiver's responsibility not to sample outside of this region.
- We can consider expanding the region to ±75 mUI since a receiver's CDR may visit these areas (with the associated low probability). The truncated ±75 UI tails have a probability of <1e-6.

Proposed change

In 120G.5.2, change item o (to be renumbered to item h) as follows:

Compute Vmid, Vupp, Vlow, VCmid, VCupp, VClow from the eye diagram using 120E.4.2 steps 4) through 6) with the exception that the CDF of the signal voltage is accumulated over the time interval $t_s \pm 0.05$ UI calculated from voltage samples taken over the time interval $t_s \pm 0.05$ UI and weighted by the function w(t) defined by Equation (120G–4), instead of "within 0.025 UI of time TCmid". For example, UPPCDF1 is calculated using Equation (120G–5).

Add equations 120G-4 and 120G-5 after the list:

$$w(t) = \begin{cases} \frac{1}{\sqrt{2\pi}\sigma_r} e^{-\frac{1}{2}\left(\frac{(t-t_s)\cdot f_b}{\sigma_r}\right)^2}, & |t-t_s| \cdot f_b \le 0.05 \\ 0, & |t-t_s| \cdot f_b > 0.05 \end{cases}$$
(120G-4)
Where $\sigma_r = 0.015$.
UPPCDF1(v) = $\frac{1}{\sum_{i=1}^{N} w(t_i)} \sum_{i=1}^{N} \int_{VCupp}^{v} \delta(u-v_i)w(t_i)du$ (120G-5)

Where $\{(v_i, t_i)\}_{i=1}^N$ is the set of samples corresponding to the topmost symbol.

NOTE—The other CDFs in 120E.4.2 are calculated similarly but with different sets of samples and integration limits.

Add the missing definition of f_{h} =26.5625 GHz to Table 120G–11.

Update: COM analysis

- Repeated analysis in <u>ghiasi</u> <u>3ck</u> <u>01</u> <u>0721</u> and added some Gaussian window options
 - Only TP1a (host output)
- lim 3ck adhoc 02 073119
 - Channels 5a (2", 5.9 dB) and 5d (9", 14.7 dB)
- COM v3.20
- Same configuration as in slide 4 \Rightarrow
 - Including 12, 13, 30 mm Tx packages

COM Code 3.2.0 Host-Module TP1a

Test case I/II/III (12, 13, 31 mm) ASIC packages.

	Table 93A-1 parameters			I/O control		Table 93A–3 parameters						
Parameter	Setting	Units	Information	1	DIAGNOSTICS	1	logical	Parameter	Setting	Units		
f_b	53.125	GBd		1	DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 0.0009909 0.0002772]			
f min	0.05	GHz			CSV_REPORT	1	logical	package ti tau	6.141E-03	ns/mm		
Delta f	0.01	GHz		1	RESULT DIR	Aresults\100GEL_C	M host (date)	package Z c	[87.587.5:92.592.5]	Ohm		
C d	[1.2e-4 0]	nE	[TX BX]		SAVE FIGURES	0 logical		ICNS FOM II D parameters				
1.5	[0.12.0]	nH	ITX 8X1		Port Order	[1324]		fv	0.594	*Eb		
C b	[0.3e-4.0]	nF	TIX RX1		RUNTAG	C2M eval		11	0.594	GHz f r specified in first colu		
7 n select	[123]		[test cases to run]		COM CONTRIBUTION	0	Ingical	1.0	0.594	682		
7 p (TX)	[12 13 30: 1 81 81 8]	mm	[test cases]		Local Search	2	100,100	12	40	GHz		
2 0 (NEXT)	1000-0001	mm	[test cases]			Operational		A. 9	0.600	V		
2 p (FEXT)	(12 13 30 1 81 81 81	mm	[test cases]		VEC Pass threshold	12	db	A of	0.600	V		
Z 0 (BX)	[000:000]	mm	[test cases]		EH min	10	mV	- Agen	0.000			
6.0	10.87e-1.01	30	TTY BY1		ERI Parr threshold	7.3	dB					
8.0	[0:07C 40]	Ohm	Includ		Min MED Tort	10	00	Parameter Settion				
Rd	[50,50]	Ohm	TX 8X1		DER 0	0.00001		board til gamma0 a1 a2	10.3.8205e.04.9.5909e.051			
Av	0.415	V	(Diring)		Tr	0.0075		board ti tau	0.00579	ns/mm		
A fe	0.415	v			FORCE TR	1	Ingical	board 7 c	100	Ohm		
A 00	0.450	V			RMD tupo	C214	100,000	z ho(D)	407	mm		
-	4	· ·			BREAD CRUMBS	0	Instical	t bp (NEXT)	407			
M	31	SamoAll			SAVE CONFIGURAT	1	logical	t he (SEVT)	407			
rampler for C2M	100	Sampful			RIOT CM	0	logical	7 bo (PX)	407			
T.O.	100	- milli			TOT	and FDI antions	logical	C O	407	10		
AC CAL DAR	30	M	[test encor]	10.0335.0.03561	TOP	A AND ERC OPTIONS	Indical	<u> </u>		10		
AC_CM_RND 0 V [test cases]		[0.0233 0.0230]	100		logical	Lastude DCD		in the second se				
6	o ar	10-			ENL ONLY	1	logical	Include PCB	0	logical		
	0.73	10			ERC_ONLY	0	logical					
c(0)	0.54	-	min		IR_IDK	0.01	ns	new				
(-1)	[-0.2:0.02:0]	-	[min:step:max]		N	800						
0(2)	[0:0:02:0:1]	-	[min:step:max]	-	beta_x	0						
C(-3)	[0]	-	[min:step:max]		rno_x	0.618	1					
c(1)	[-0.1:0.02:0]		[min:step:max]		fixture delay time	[0 0.2e-9]	[port1 port2]					
N_D	4	U			TDR_W_TXPKG	1						
D_max(1)	0.4		As/dffe1		N_DX	0	UI					
b_max(2N_b)	[0.15 0.15 0.1]	-	As/dte2N_b	-	Tukey_Window 1							
o_min(x)	0.1		Asydnei		P0	eceiver testing						
b_min(2N_b)	[-0.15-0.15-0.05]		As/dfe2N_b		RX_CALIBRATION	0	logical					
g_DC	[-13:1:0]	dB	[min:step:max]		Sigma BBN step	5.00E-03	V					
£2	12.58	GHz				Noise, jitter						
f_p1	20	GHz			sigma_RJ	0.01	UI					
f_p2	28	GHz			A_DD	0.02	UI					
E_DC_HP	[-3:0.5:0]		[min:step:max]		eta_0	4.10E-08	V^2/GHz					
f_HP_PZ	1.328125	GHz			SNR_TX	32.5	dB					
				1	RIM	0.95						
G_Qual	[2-9;2-12;4-12;6-13]	dB	ranges	-								

July 2021

20

15

10

5

0

12

Results in black

match slide 6 of

ghiasi_01_0721

13

Channel5a

30

12

To make this channel pass with multiple packages we need Gaussian weighting with σ of 15-20 mUI

13

Chapnel5d

30

Gaussian - 75 - 15

Gaussian - 75 - 20

Gaussian - 75 - 25

Window size (truncation of the Gaussian) has minor

effect compared to σ

8

6

4

2

0

12

30

Channel 5a

This short channel with

bad reflection still fails

VEC – as we want

12

13

Channel5d

30

Rectangular - 50 - N/A

Gaussian - 50 - 15

Gaussian - 75 - 15

Gaussian - 75 - 20

Gaussian - 75 - 25

width

Results in table form

EH

VEC

Average of E	H Window Rectang	r T_O ular Gauss	sigma sian				Average of VI	EC Wir Rec	ndow T_(tangular Ga	D sig ussian	ma		
	Rectang	50	50	75				net	50	50	75		
Channel	Tx zp N/A		15	15	20	25	Channel	Tx zp N/A	4	15	15	20	25
Channel5a	12	33	42	43	39	34	Channel5a	12	9.5	7.4	7.3	8.1	9.2
	13	14	21	20	18	16		13	16.5	13.2	13.5	14.3	15.5
	30	20	28	28	25	22		30	11.8	9.4	9.3	10.1	11.1
Channel5d	12	13	17	17	16	14	Channel5d	12	10	7.6	8.1	8.9	10
	13	8	13	13	11	9		13	14.4	10.9	10.7	12	13.5
	30	9	13	13	12	10		30	11.9	9.1	9	10	11.4