Discussion Slides Annex 120G gdc

Beth Kochuparambil

120G	MI SI calibration + gdc	72, 131, dudek_01
120 G	EO RR bbmax/gdc	$100,98(\mathrm{R}+), 99(\mathrm{R}+), 115,72$

Wording

The stressed input signal is calibrated by the following procedure.
[...]
with the exception for the high-loss case that the reference receiver CTLE setting that minimizes VEC has gDC + gDC2 less than or equal to -13 dB .
g) Eye height and VEC are measured at TPla as described in 120G.5.2^. The pattern generator random $\quad 13$ jitter and differential peak-to-peak voltage are adjusted so that the eye height of the smallest eye 15 matches the target value and VEC is within the limits in Table 120G-10. The differential peak-topeak input voltage tolerance given in Table 120G-9 is not exceeded. For the high-loss case, thereference reeeiver $C T L E$ is limited to settings where $g_{D C}+g_{D C 2}$ is less than or equal to -13 dB .
reference receiver CTLE is limited to settings where $\mathrm{g}_{\mathrm{DC}}+\mathrm{g}_{\mathrm{DC}}$ is less than or equal to -13 dB .
This restriction does not apply for the low-loss case. The pattern generator pre-emphasis and reference receiver settings that minimize VEC are used.

| Cl 120G SC 120G.3.4.3.2 | P 274 | L17 | \# 131 |
| :--- | :---: | :---: | :---: | :---: |
| Dawe, Piers
 Comment Type T | Comment Status D | | MI SI calibration |

This is open to misinterpretation: "For the high-loss case, the reference receiver CTLE is limited to settings where $\mathrm{gDC}+\mathrm{gDC} 2$ is less than or equal to -13 dB . This restriction does not apply for the low-loss case." Even the previous text, "The CTLE setting, gDC+gDC2,
has to be less than or equal to -13 dB " was misinterpreted to mean that there is no
constraint on gDC + gDC2 for the low loss case. Yet the limits for the appropriate test
point in Table 120G-11 still apply.
Actually, for a stressed signal calibration, we are looking for a signal where the optimum
CTLE setting obeys the rules (so that the signal is not low stress but outside the expected range, but right stress and in the expected range).
See another comment for whether -13 dB is the right value.

SuggestedRemedy

Change "Eye height and VEC are measured at TP1a as described in 120G.5.2." to "Eye
height and VEC are measured at TP1a as described in 120G.5.2, with an additional
constraint for the high-loss case: the reference receiver CTLE setting that minimizes VEC
has gDC + gDC2 less than or equal to -13 dB ."
Delete "For the high-loss case, the reference receiver CTLE is limited to settings where
$\mathrm{gDC}+\mathrm{gDC} 2$ is less than or equal to -13 dB . This restriction does not apply for the low-loss case."

GDC Values

Slides 5-9 Comment walk through
Slides 10-11 All together
Slide 12 Proposed Response

120G.3.4.3.2 Module stressed input test calibration

The stressed input signal is calibrated by the following procedure. [...]
with the exception for the high-loss case that the reference receiver CTLE setting that minimizes VEC has gDC +gDC 2 less than or equal to -13 dB .
g) Eye height and VEC are measured at TPla as described in 120G.5.2. The pattern generator random ${ }^{-10.5} \quad 13$ jitter and differential peak-to-peak voltage are adjusted so that the eye height of the smallest eye matches the target value and VEC is within the limits in Table 120G-10. The differential peak-to-

Table 120G-11-Eye opening reference receiver parameter values

Signaling rate	f_{b}	53.125	GBd
Receiver 3 dB bandwidth	f_{r}	$0.75 \times f_{\mathrm{b}}$	GHz
Continuous time filter, DC gain for TP1a	g_{DC}		
Range for $g_{\mathrm{DC} 2}=0$		-2 to -9	$-\mathbf{1 1}$
Range for $-1 \leq g_{\mathrm{DC} 2}<0$		-2 to -12	
Range for $-2 \leq g_{\mathrm{DC} 2}<-1$	-4 to $-12-10 \quad \mathrm{~dB}$		
Range for $-3 \leq g_{\mathrm{DC} 2}<-2$	-6 to -13	-4	to -9
Step size		1.0	

tinuous time filter, DC gain for TP1
Range for $g_{\mathrm{DC} 2}=0$

$$
\begin{array}{ll}
-2 \text { to }-12 & -11 \\
-4 \text { to }-12 & -10
\end{array} \quad \mathrm{~dB}
$$

Range for $-1 \leq g_{\mathrm{DC} 2}<0$
Range for $-2 \leq g_{\text {DC2 }}<-1$
Step size
\rightarrow

| CI 120G SC 120G.3.4.3.2 | P274 | L17 | $\# 72$ |
| :--- | :---: | ---: | :--- | :--- |
| Dudek, Mike
 Comment Type | TR | Marvell | |

The optimum value of CTLE peaking (gdc+gdc2) when calibrating the high loss stressed module receiver test is only 10.5 dB . See Dudek_3ck_01_0921. Requiring at least 13dB is degrading the signal making it difficult to generate the signal (see e.g. Snapshot of
Receiver Module Input Tests (no convergence on high-loss TP1a channel) and private discussions). Note also that the maximum allowed peaking for testing the host output should not be significantly different from this value. A presentation will be made.
SuggestedRemedy
Change -13 dB to -10.5 dB . Also in Table 120G-11 change the gdc values for TP1a range for $-1<$ GDC2 <0 to -2 to -11 ,
the range for $-2<$ GDC2 <-1 to -4 to -10 , and
the range for $-3<$ GDC2 <-2 to -4 to -9
$\underline{\text { https://www.ieee802.org/3/ck/public/21 09/dudek 3ck } 01 \text { 0921.pdf }}$ Optimum CTLE peak as a function of Host PCB Trace Length

Q. 5 Measure ment methodology Table $120 \mathrm{G}-11$-Eye opening reference receiver parameter values

The limits for TP4 gDC, gDC2 should not be the same for short and long output modes. Obviously, different channels will need different CTLE settings. Obviously, CTLE settings hat only signals outside what the spec is designed for use, should be excluded, to make implementers set up their product correctly
SuggestedRemedy
Create separate limits for TP4 short and long output modes, so 4 sets for TP4+, in the style of TP1a. If you don't have any better numbers, create them anyway with the same numbers in each set - but see another comment

Proposed Response
Response Status W
PROPOSED REJECT
This comment is a restatement of D2.1 comment \#103 and D2.0 comment \#183, which were rejected on the basis of providing insufficient justification and detail.
This comment provides expanded justification, but the suggested remedy does not provide sufficient detail to implement

	36
	37
	38
dB	39
	40
	41
	42
	43
	44

| Response |
| :---: | :---: | :---: |
| REJECT |\quad Response Status u \quad Draft 2.1, \#103

This comment is a restatement of D2.0 comment \#179, which was rejected on the basis of insufficient justification and detail. It adds request to provide 4 sets of values in the style used for TP1 a but does not provide specific values. No further justification is provided.

The comment does not provide sufficient justification for the proposed changes nor does the suggested remedy provide sufficient detail to implement.

Response
Response Status U
REJECT
Draft 2.0, \#183
Minimum value
Maximum value
$g_{\mathrm{DC} 2}$

Step size
0.5

Continuous time filter, zero frequency for $g_{\mathrm{DC}}=0$

The limits for TP4 gDC, gDC2 should not be the same for short and long output modes. Obviously, different channels will need different CTLE settings. Obviously, CTLE settings that only signals outside what the spec is designed for use, should be excluded, to make implementers set up their product correctly.
SuggestedRemedy
Create separate limits for TP4 short and long output modes, so 4 sets for TP4+, in the style of TP1a. If you don't have any better numbers, create them anyway with the same numbers in each set - but see another comment.
Proposed Response
Response Status
PROPOSED REJECT.
This comment is a restatement of D2.1 comment \#103 and D2.0 comment \#183, which were rejected on the basis of providing insufficient justification and detail. This comment provides expanded justification, but the suggested remedy does not provide sufficient detail to implement.

Continuous time filter, DC gain for TP4 near-end, short Minimum value
Maximum value Step size

Continuous time filter, DC gain 2 for TP4 near-end, short
Minimum value
Maximum value
Step size
Continuous time filter, DC gain for TP4 far-end, short
Minimum value
Maximum value
Step size
Continuous time filter, DC gain 2 for TP4 far-end, short
Minimum value
Maximum value
Step size

Continuous time filter, DC gain for TP4 near-end, long Minimum value Maximum value Step size	g_{DC}
Continuous time filter, DC gain 2 for TP4 near-end, long Minimum value Maximum value Step size	$g_{\mathrm{DC} 2}$
Continuous time filter, DC gain for TP4 far-end, long Minimum value Maximum value Step size	g_{DC}
Continuous time filter, DC gain 2 for TP4 far-end, long Minimum value Maximum value Step size	$g_{\mathrm{DC} 2}$

 21
Cl 120G SC 120G.5.2
P 277
L46

As a lot of the channel for TP4 far-end is known exactly and the max loss to TP4 far end is less than to TP1a, the range of gDC, gDC2 combinations should be a subset of the TP1a ones.

SuggestedRemedy
For Continuous time filter, $D C$ gain for TP4 far-end (gDC), change to sets of limits that depend on gDC2 in the same style as for TP1a. The allowed values should be subsets of those for TP1a. For TP4 long far end, use minimum gDC 1 dB higher than allowed for TP1a; for TP4 short far end, 3 dB higher than for TP1a.
Proposed Response Response Status w PROPOSED REJECT.
This comment is a restatement of D2.1 comment \#104 and D2.0 comment \#178, which were rejected on the basis of providing insufficient justification and detail.
This comment provides no new justification, but does provide more details for implementation.

		Current TP4 far-end	Proposed short	Proposed long
Range for gD	$C 2=0$	N/A	N/A	N/A
Range for -1	$<\mathrm{gDC} 2<0$	N/A	N/A	N/A
Range for -2	$\leq \mathrm{gDC} 2 \leq-1$	-2 to -9	-4 to -9	-4 to -11
Range for $-3 \leq \mathrm{gDC} 2<-2$		-2 to -9	-6 to -10	-6 to -12
$\begin{aligned} & -9 \\ & -2 \\ & 1.0 \end{aligned}$	Responss REIECT. This commen insufficient ju provided. The commen the suggested	a restatement of D2.0 com cation and detail. No furthe es not provide sufficient ju medy provide sufficient detail	ent \#178, which was ustification or implem ication for the propo to implement.	ft 2.1, \#104 ected on the basis of tation detail is changes nor does
$\begin{aligned} & -1 \\ & 0.5 \end{aligned}$	Response REJECT.	Response Status		Draft 2.0, \#178

Continuous time filter, zero frequency for $g_{\mathrm{DC}}=0$

Parameter	Symbol	Value	Units
Signaling rate	f_{b}	53.125	GBd
Receiver 3 dB bandwidth	f_{r}	$0.75 \times f_{\mathrm{b}}$	GHz
Continuous time filter, DC gain for TP1a Range for $g_{\mathrm{DC} 2}=0$ Range for $-1 \leq g_{\mathrm{DC} 2}<0$ Range for $-2 \leq g_{\mathrm{DC} 2}<-1$ Range for $-3 \leq g_{\mathrm{DC} 2}<-2$ Step size	$g_{\text {DC }}$	$\begin{aligned} & -2 \text { to }-9 \\ & -2 \text { to }-12 \\ & -4 \text { to }-12 \\ & -6 \text { to }-13 \\ & 1.0 \end{aligned}$	dB
Continuous time filter, DC gain 2 for TP1a Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{gathered} -3 \\ 0 \\ 0.5 \end{gathered}$	dB
Continuous time filter, DC gain for TP4 near-end Minimum value Maximum value Step size	$g_{\text {DC }}$	$\begin{gathered} -5 \\ -1 \\ 1.0 \end{gathered}$	dB
Continuous time filter, DC gain 2 for TP4 near-end Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{gathered} -2 \\ 0 \\ 0.5 \end{gathered}$	dB
Continuous time filter, DC gain for TP4 far-end Minimum value Maximum value Step size	$g_{\text {DC }}$	$\begin{aligned} & -9 \\ & -2 \\ & 1.0 \end{aligned}$	dB
Continuous time filter, DC gain 2 for TP4 far-end Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{aligned} & -3 \\ & -1 \\ & 0.5 \end{aligned}$	dB
Continuous time filter, zero frequency for $g_{\mathrm{DC}}=0$	f_{z}	12.58	GHz

For your reference, Draft 2.2 (as it sits today)

Parameter	Symbol	Value	Units
Signaling rate	f_{b}	53.125	GBd
Receiver 3 dB bandwidth	f_{r}	$0.75 \times f_{\mathrm{b}}$	GHz
Continuous time filter, DC gain for TP1a Range for $g_{\mathrm{DC} 2}=0$ Range for $-1 \leq g_{\mathrm{DC} 2}<0$ Range for $-2 \leq g_{\mathrm{DC} 2}<-1$ Range for $-3 \leq g_{\mathrm{DC} 2}<-2$ Step size			
Continuous time filter, DC gain 2 for TPla Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{gathered} -3 \\ 0 \\ 0.5 \end{gathered}$	dB

Continuous time filter, DC gain for TP4 near-end, short Range for $-2 \leq \operatorname{gDC2}<0$

Continuous time filter, DC gain 2 for TP4 near-end, short
Minimum value
Maximum value
Step size
Continuous time filter, DC gain for TP4 far-end, short * 98 Range for $-2 \leq$ gDC2 <-1

Range for $-3 \leq$ gDC2 <-2
Step size
Continuous time filter, DC gain 2 for TP4 far-end, short
Minimum value
Maximum value
Step size
Continuous time filter, zero frequency for $g_{\mathrm{DC}}=0$

30G-11-Eye opening reference receiver parameter values
21

Parameter	Symbol	Value	Units
Signaling rate	f_{b}	53.125	GBd
Receiver 3 dB bandwidth	f_{r}	$0.75 \times f_{\mathrm{b}}$	GHz
Continuous time filter, DC gain for TP1a Range for $g_{\mathrm{DC} 2}=0$ Range for $-1 \leq g_{\mathrm{DC} 2}<0$ Range for $-2 \leq g_{\mathrm{DC} 2}<-1$ Range for $-3 \leq g_{\mathrm{DC} 2}<-2$ Step size	$g_{\text {DC }}$	$\begin{aligned} & -2 \text { to }-9 \\ & -2 \text { to }-11 \\ & -4 \text { to }-10 \\ & -4 \text { to }-9 \\ & 1.0 \end{aligned}$	dB
Continuous time filter, DC gain 2 for TPla Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{gathered} -3 \\ 0 \\ 0.5 \end{gathered}$	dB
Continuous time filter, DC gain for TP4 near-end *98 Range Step size	$g_{\text {DC }}$	$\begin{gathered} -1 \text { to }-5 \\ 1.0 \end{gathered}$	dB
Continuous time filter, DC gain 2 for TP4 near-end Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{gathered} -2 \\ 0 \\ 0.5 \end{gathered}$	dB
	$g_{\text {DC }}$	$\begin{gathered} -2 \text { to }-9 \\ 1.0 \end{gathered}$	dB
Continuous time filter, DC gain 2 for TP4 far-end Minimum value Maximum value Step size	$g_{\text {DC2 }}$	$\begin{aligned} & -3 \\ & -1 \\ & 0.5 \end{aligned}$	dB
Continuous time filter, zero frequency for $g_{\text {DC }}=0$	f_{z}	12.58	GHz

Editor's Recommendation

Comment	Response
72	Accept, analysis/presentation is justification
115	Reject, limited justification
99	Reject, limited justification
98	AlP; accept editorial change of the TP1a style makes it easier to read. With 99 rejected, no justification requiring separate entries for short/long.

g) Eye height and VEC are measured at TP1a as described in 120G.5.2 with the exception for the high-loss case that the reference receiver CTLE setting that minimizes VEC
has gDC +gDC 2 less than or equal to -10.5 dB .

12
bbmax Value

SC 120G.5.2
P277
$L 32$
\#

Nvidia
Dawe, Piers
Come, Piers
Comment Type
My recent simulations don't use gDC as strong as the table allows, but occasionally, the first DFE tap hits the limit of 0.4

SuggestedRemedy
Increase bbmax(1) from 0.4 to 0.5 , increase the minimum for gDC at TP1a and TP4 long far end.

Proposed Response Response Status W
PROPOSED REJECT.
This comment does not apply to the substantive changes between IEEE P802.3ck D2.2 and D2.1 or the unsatisfied negative comments from previous drafts. Hence it is not within the scope of the recirculation ballot.
The comment provides only annecdotal evidence.
For task force discussion.
Table 120G-11—Eye opening reference receiver parameter values (continued)

Parameter	Symbol	Value	Units
Continuous time filter, pole frequencies	$f_{p 1}$	20	GHz GHz
Continuous time filter, low-frequency pole/zero	$f_{p 2}$	28	f_{LF}
$\mathrm{f}_{\mathrm{b}} / 40$	GHz		
Decision feedback equalizer (DFE) length	N_{b}	4	UI
Normalized DFE coefficient maximum limit $n=1$ $n=2$ $n=3$ or 4$\quad b b_{\max }(n)$			
Normalized DFE coefficient minimum limit $n=1$ $n=2$ $n=3$ or 4		0.4	-
One-sided noise spectral density	$b b_{\min }(n)$	0.15	-

Proposal has 3 parts

- Increase bbmax(1) from 0.4 to 0.5
- Increase minimum gDC values for TP1a
- No proposal given here
- Done by Mike Dudek in comment 72
- Increase minimum gDC values for TP4
- No proposal given here
- Proposal given in comment 99

