CM Measurement Specification Recommendations

Richard Mellitz, Samtec

September 2021 802.3ck Interim

CM Comment

Comment

Common mode measurements are not well enough defined to precisely specify CM voltage at TP0v, TP1a, TP4 and TP2. In addition, all aspects of a common mode voltage may not be detrimental as illustrated in mellitz_3ck_adhoc_01_090821.

□ Proposed Change:

Add section "93A.6 Common Mode measurements". See presentation mellitz_3ck_01_0921

Common mode voltage depends on use case

Add measurement for correlated common mode voltage

□ Specify when TPOv is not used

- *Pmax_{ccm}* : maximum CM fitted waveform of *v_{cmi}* (120E.3.1 figure 120E-7)
- □ Specify when TPOv is used
 - SNR_{ccm} : dB ratio of P_{max} to $Pmax_{ccm}$

Add measurement for un-correlated common mode voltage

- □ Specify in all use cases
 - SNR_{ucm} : dB ratio of P_{max} to σ_{ncm}

Add section for CM waveform fitting

Define parameter Pmax_{ccm}

Option 1

- Compute the linear fit to the averaged captured waveform $v_{CMI}(t)$ and the linear fit pulse response, according to 120D.3.1.3 by replacing Y with v_{cmi} , and P with P_{cm} .
- **D** Define the fitted waveform as $P_{cm}X_1$ (ref eq 85.8).
- **D** Denote $Pmax_{ccm}$ = Maximum | $P_{cm}X_1$ |

Option 2

- **D**enote $Pmax_{ccm}$ = Maximum | averaged($v_{cmi}(t)$ |
 - Averaging over repeated PRBSQ13 patterns

Option 3

Denote $Pmax_{ccm}as vf_{cm}$ using the same method as vf is computed using P_{cm} instead of P.

option 1 seems attractive but recommend option 2 as it provide a simpler method.

Define parameter σ_{ncm}

□ from 120D.3.1.6 and

Using the same configuration of the transmitter equalizer, measure the RMS deviation from the mean of the CM voltage at a time point corresponding to where the DM signal is at a fixed low-slope point in runs of at least 6 consecutive identical PAM4 symbols. PRBS13Q includes such a run for each of the PAM4 levels. The average of the four measurements is denoted as σ_{ncm} .

Denote 2 more specification parameters

$$\Box SNR_{ccm} = 20 \log_{10} \left(\frac{P_{max}}{P_{max}_{cm}} \right)$$
$$\Box SNR_{ucm} = 20 \log_{10} \left(\frac{P_{max}}{\sigma_{ncm}} \right)$$

Usage

For 120G (table 120G-1, 120G-3) and 162 (table 162-10)

- □ Replace item "AC common-mode RMS output voltage (max)"
- □ With "Peak fitted AC common mode (max) *Pmax_{ccm}*"

For 120F (table 120F-1) and 163 (table 163-5) (TPOv specs)

Option A

- □ Replace item "AC common-mode RMS output voltage (max)"
- □ With "Correlated AC common mode SNR (min), *SNR_{ccm}*"

Option **B**

- □ Remove item "AC common-mode RMS output voltage (max)"
- Do not specify because the test point is far away where the Rx needs protecting
- Also correlated common mode is already include in insertion loss.

Recommend option B

- □ For 120F, 120G, 162, 163 add to the transmitter tables
- \Box "Uncorrelated AC common mode SNR (min), SNR_{ucm} "

Suggested specification values

table	Pmax _{cm}	SNR _{ccm}	SNR _{ucm}
120G-1	50 mV	NA	28 dB
120G-3	50 mV	NA	28 dB
162-10	50 mV	NA	28 dB
120F-1	NA	NA (13 dB for option A)	28 dB
163-5	NA	NA (13 dB for option B)	28 dB

13 dB SNR_{ccm} is approximate the dB ratio of the minimum peak reference package pulse at tp0 divided by 50 mV

- 50 mV is essentially a CM tolerance value (*Pmax_{cm}*)
- 28 dB SNR_{ucm} is approximate the dB ratio of the minimum peak reference pulse at tp0 divided by 10 mV RMS
 - 10 mV broadband AC CM uncorrelated noise at TPO has little effect on effective SNDR or COM (see mellitz_3ck_adhoc_01a_061720)

