Addressing J3u measurement issues (comments i-156 and i-171)

Adee Ran, Cisco

Piers Dawe, Nvidia

Background

- J3u measurement seems to be susceptible to oscilloscope noise, as demonstrated in <u>rysin 3ck 01b 0122</u>.
- The following directions have been discussed:
 - Relax the specification (e.g., per the suggested remedy of comments i-156 and i-171: "Change J3u max from 0.115 UI to 0.125 UI")
 - Measure only on transitions between levels 0 and 3 (proposed in the presentation)
 - specify (in a non-prescriptive way) that measurement noise effects should be factored out
 - ... and combinations of the above
- Although there was consensus that the issue should be addressed, discussion and straw polls during the February 16 2022 meeting did not show a clear path for decision.
- This presentation attempts to summarize the discussion and provide three options for resolution, with detailed changes.

Relaxing the spec?

- <u>rysin 3ck 01b 0122</u> showed results measured at TP2 "for a combination of COM package with recommended TP0-TP2 PCB loss" with IL of 14.8 dB.
- Measurements at TP2 are more sensitive to noise than at Tp0v (slope degradation is more severe).
 - Note that the J3u spec at TP2 (115 mUI) is relaxed compared to TPOv (106 mUI), to account for the higher loss
 - The numbers above are the same as in C136 and C137 respectively
 - But the slope degradation in C162 is expected to be more severe than in C136; compare to *R*_{peak} (min) which is 0.397 in C162 vs. 0.49 in C136!
 - It makes sense to relax the TP2 J3u spec further in C162, compared to 163/120F.
 - There are three separate tables, so change only one (Table 162–10).
 - Suggested remedy provides the value 0.125 UI.

Option A1: Relax max J3u at TP2

• Change the value of J3u (max) in Table 162–10 from 0.115 UI to 0.125 UI.

Output jitter (max)			
JRMS	162.9.3.4	0.023	UI
J3u	162.9.3.4	<u>0.115</u> 0.125	UI
Even-odd jitter, pk-pk	162.9.3.4	0.025	UI

Measure only on 0/3 transitions?

- <u>rysin 3ck 01b 0122</u> showed lower J3u on the large transitions, and provided a reasonable explanation
 - Smaller transitions have lower slopes ⇒ noise to timing error conversion is larger
 - Noise can be introduced by either the scope (measurement inaccuracy) or the DUT (e.g., crosstalk, which would be falsely attributed to jitter)
- In jitter measurement, we are interested in the timing error of the clock driving the signal, not in the transition times per se.
 - In any reasonable design, all transitions are driven by the same clock (possibly with small differences due to clock distribution network)
 - Taking the $5 \cdot 10^{-4}$ quantile of the joint distribution for J3u (or $5 \cdot 10^{-5}$ for J4u) makes the worst-case transition dominate the result
- However, the effect of timing error on voltage noise is smaller for the smaller transitions (see <u>backup slides</u> for details)
 - Thus, the receiver's SNR and performance is dominated by jitter from the large transitions!
- We can have a spec for a modified J3u with only the large transitions, and a more relaxed spec for J3u with all transitions.
 - This makes sense for all interfaces.

Option A2: Specify 0/3 transitions separately

• Change the second paragraph of 162.9.3.4 as follows:

J3u and J_{RMS} are calculated using the measurement method specified in 120D.3.1.8.1. J3u is defined as the time interval that includes all but 10^{-3} of $f_J(t)$, from the 0.05th to the 99.95th percentile of $f_J(t)$. J3u₀₃ is defined as the time interval that includes all but 10^{-3} of $f_{J03}(t)$, from the 0.05th to the 99.95th percentile of $f_{J03}(t)$, where $f_{J03}(t)$ is the estimated probability distribution created from the sets S0₁ and S0₂, that is, the R03 and F30 transitions.

- Change the last row of Table 162–10 as shown on the right.
- Apply a similar change in Table 163–5, keeping the existing value 0.106 UI for J3u₀₃, and 0.115 UI (~9% higher) for J3u.
- Implement similar changes in Annex 120F for J4u/J4u₀₃, with values 0.128 UI and 0.118 UI respectively.
- Implement with editorial license.

last row of Table 162–10

Output jitter (max)			
JRMS	162.9.3.4	0.023	UI
J3u ₀₃	162.9.3.4	0.115	UI
<u>J3u</u>	<u>162.9.3.4</u>	<u>0.125</u>	<u>UI</u>
Even-odd jitter, pk-pk	162.9.3.4	0.025	UI

Measurement noise effects should be factored out?

 Straw poll #19 taken during the February 16th session was quite decisive. Straw poll #19:
I support specifying for CR and KR J3u that measurement noise effects should be factored out (non-prescriptive)
A: Yes
B: No
Results: A: 28, B: 2
(See comment i-156)
While taking this straw poll it was noted that it is for CR/KR j3u measurement only, but would not preclude expanding this action to other clauses, should there be consensus to do so.

- The discussion suggested that phrasing is important
 - Should be non-prescriptive
 - ... and not rule out similar adjustment in other measurements
 - ... and not allow high measurement noise to mask bad results.
- It is proposed to use the phrase "proper accounting for measurement noise effects".
 - Or alternatively, "appropriate"

Option B: Recommend accounting for noise

- In 162.9.3.4, change "Note" to "Note 1", and add Note 2 as follows: <u>NOTE 2—J3u may be sensitive to measurement noise being converted to timing</u> <u>errors. Hence, proper/appropriate accounting for measurement noise effects is</u> <u>recommended.</u>
- In 120F.3.1.3, add the following note:

<u>NOTE</u>—J4u may be sensitive to measurement noise being converted to timing errors. Hence, proper/appropriate accounting for measurement noise effects is recommended.

Summary

- Option A1
 - Relax the spec for J3u at TP2 as in slide 4
- Option A2
 - Keep J3u as is, and specify J3u₀₃ in addition as in suce 6
 - This encompasses option A
- Option B
 - Recommend accounting for noise effects as in slide 8
- Questions:
 - A1 or A2 or no change?
 - B or not B?
- Recommended: A2 and B

	. ,	in toble .	101 1011	0111 01220	UI to 0.1
	162024	0.022			
J3u			UI		
Even-odd jitter, pk-pk	162.9.3.4	0.025	UI		
		JRMS 162.9.3.4	JRMS 162.9.3.4 0.023 J3u 162.9.3.4 0.1150.125	JRMS 162.9.3.4 0.023 UI J3u 162.9.3.4 0.1150.125 UI	JRMS 162.9.3.4 0.023 UI J3u 162.9.3.4 0.1150.125 UI

Backup

Correlation between uncorrelated jitter measurement and COM noise model

PM-AM conversion Simulation of PRBS13Q

- Signal at TP2 with $\sigma_{\textrm{RJ}}$ = 0.01 UI, $A_{\textrm{DD}}$ =0.02 UI
- 7.5 ps Gaussian Tx, reference mated test fixtures, lossy transmission line and BT4 observation filter bring Rpeak to 0.397

Example: 0 to 3 edge of the set of 12

- Blue: waveform
- Green: RMS noise and distortion allowed by SNR_{TX} of 32.5 dB
- Red: apparent noise or distortion caused by jitter
- Magenta; same, RMS over the whole PRBS13Q pattern
- Red line has maxima at times of 0 to 3 and 3 to 0 transitions
- Receiver can sample ~1/2 UI away from the maxima or crossing times

Example: 0 to 3 and 3 to 0 edges of the set of 12

- Blue: waveform
- Green: RMS noise and distortion allowed by ${\sf SNR}_{\sf TX}$ of 32.5 dB
- Red: apparent noise or distortion caused by jitter
- Magenta; same, RMS over the whole PRBS13Q pattern
- The falling 3 to 0 transition is followed by a 0 to 1 transition
 which causes little vertical impairment
- COM knows that some transitions are less important than others; it calculates PM to AM conversion with factors for PAM4 as on the left

All 12 edges

Green 10* RMS err(SNR TX), magenta and red 10*RMS err from jitter 0.3 0.2 Waveform at 12 edges; 10* RMS errors 0.1 -0.1 -0.2 -0.3 2 3 5 6 7 4 Time (UI)

- Blue: waveform
- Green: RMS noise and distortion allowed by SNR_{TX} of 32.5 dB
- Red: apparent noise or distortion caused by jitter
- Magenta; same, RMS over the whole PRBS13Q pattern
- Vertical impairment of 1-high
 and 2-high (dashed) edges is 2/3 and 1/3 of 3-high edges

All 12 edges with example sampling and histogram of whole pattern

Top 1/6 of edges in the black box

- Blue: waveform
- Green: RMS noise and distortion allowed by SNR_{TX} of 32.5 dB
- Red: apparent noise or distortion caused by jitter
- Magenta; same, RMS over the whole PRBS13Q pattern
- Sampling time can be away from the red peak
- The equalization in a real link will reduce the peak but the 3high edges still dominate the distribution
- Histogram of RMS errors at this
 example sampling time, for the whole PRBS13Q pattern, is shown on left

All PRBS13Q The 3-high edges dominate

- Blue: waveform
- Green: RMS noise and distortion allowed by SNR_TX of 32.5 dB
- Red: apparent noise or distortion caused by jitter
- Magenta; same, RMS over the whole PRBS13Q pattern
- Black curve shows the RMS error from an increasing portion of the edges starting with the shallowest
- Curving upwards: even though they occur on average only once in six edges, the 3-high edges dominate the RMS error

Summary

- Timing errors ("true" jitter) cause voltage deviations that can be investigated by the SNDR method
- The biggest edges with the highest slew rate create the biggest error
 - This is known, and included in COM
- Even though they are the least numerous type, the 3-high edges dominate the RMS error over the whole pattern
 - If the other edges are somewhat more or less jittered, it won't affect link performance significantly
 - But the measurement error is much larger on the smaller edges
- Our measurement method should align to the effect on the link
 - Focus on edges from 0 to 3 and 3 to 0