Comment Resolution Draft 3.2 Comments

Matt Brown, Huawei, 802.3ck Editor-in-Chief Howard Heck, Intel

Cross-Clause

Table 162–11—Summary of transmitter specifications at TP2

Parameter	Subclause reference	Value	Units
Signaling rate, each lane (range)	162.9.4.1	$53.125 \pm 50 \text{ ppm}^{a}$	GBd
Differential pk-pk voltage with Tx disabled (max) ^b	93.8.1.3	30	mV
DC common-mode voltage (max) ^b	93.8.1.3	1.9	v
AC common-mode peak-to-peak voltage (max) Low frequency, $V_{CMPP-LF}$ High frequency, $V_{CMPP-HF}$	162.9.4.4	30 80	mV mV
Differential pk-pk voltage, $v_{di} (\max)^b$	93.8.1.3	1200	mV
Effective return loss, ERL (min)	162.9.4.8	7.3	dB

162.9.4.4 Peak-to-peak AC common-mode voltage

Peak-to-peak AC common-mode voltage is defined as the AC common-mode voltage (see 93.8.1.3) range measured at TP0v that includes all but 10^{-4} of the measured distribution, from 0.00005 to 0.99995 of the cumulative distribution. The transmitter equalization is turned off (preset 1 condition).

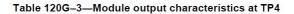
Low-frequency peak-to-peak AC common-mode voltage, $V_{\text{CMPP-LF}}$, is determined using the AC commonmode voltage measured with a low-pass filter defined by Equation (162–6).

High-frequency peak-to-peak AC common-mode voltage, $V_{\text{CMPP-HF}}$, is determined using the AC common-mode voltage measured with a high-pass filter defined by Equation (162–7).

$$H_{LF}(f) = H_r(f)$$
 (162–6)

$$H_{HF}(f) = 1 - H_r(f) \tag{162-7}$$

where $H_r(f)$


is defined by Equation (93A–20) with f_r set to 100 MHz

The low-frequency and high-frequency peak-to-peak AC common-mode voltages shall meet the specifications for $V_{\text{CMPP-LF}}$ (max) and $V_{\text{CMPP-HF}}$ (max) in Table 162–11.

NOTE— V_{CMPP} measurement may be sensitive to mismatches between the single-ended paths in the test fixture and the test setup. Careful design and calibration of the test system are recommended.

Table 120G-1-Host output characteristics at TP1a

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		$53.125 \pm 50 \text{ ppm}^{a}$	GBd
DC common-mode output voltage (max)	120G.5.1	2.8	V
DC common-mode output voltage (min)	120G.5.1	-0.3	V
Single-ended output voltage (max)	120G.5.1	3.3	V
Single-ended output voltage (min)	120G.5.1	-0.4	V
Peak-to-peak AC common-mode voltage (max) Low-frequency, $V_{CMPP-LF}$ High-frequency, $V_{CMPP-HF}$	120G.5.1	32 80	mV
Differential peak-to-peak output voltage (max) Transmitter disabled	120G.5.1	35	mV

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125 ^a	GBd
Peak-to-peak AC common-mode voltage (max) Low-frequency, V _{CMPP-LF} High-frequency, V _{CMPP-HF}	120G.5.1	60 80	mV
Differential peak-to-peak output voltage (max) Short mode Long mode	120G.5.1	600 845	mV mV

120G.5.1 Signal levels

The signal levels are as defined in 120E.3.1.2.

Low-frequency and high-frequency peak-to-peak AC common-mode voltage, $V_{\text{CMPP-LF}}$ and $V_{\text{CMPP-HF}}$, respectively, are defined by the method specified in 162.9.4.4 with the following exceptions:

- a) The peak-to-peak AC common-mode voltage is defined as the AC common-mode voltage range measured at TP1a or TP4 that includes all but 10⁻⁵ of the measured distribution, from 0.000005 to 0.9999995 of the cumulative distribution.
- b) The condition for transmitter equalization to be turned off does not apply.

C/ 162	SC 162.9.4	P 166
Dawe, Pie	ers J G	NVIDIA

L 30

R2-11

Comment Type TR Comment Status D

AC CM noise

Now an output has two opportunities (two frequency bands) to create AC CM, but it is the combination that affects the receiver. Even after the recent change, the 30+80 mV pk-pk AC CM here (CR host output) and 30+80 in Table 120G-1 (C2M host output) is too much, and 60+80 in Table 120G-3 (C2M module output) is far too much.

SuggestedRemedy

For host output in CR and C2M, apply a third limit covering all frequencies. Unless we think of something better, such as a frequency weighting, do the same for module output in C2M.

Proposed Response Response Status W

PROPOSED REJECT.

This comment is a restatement of Draft 3.1 comment R1-42. The resolution to the comment is provided in the following document:

https://www.ieee802.org/3/ck/comments/draft3p1/8023ck_D3p1_final_closedcomments_sor tedByNumber.pdf

In this new comment, no new evidence to support the change is provided and the remedy does not provide sufficient detail to implement.

This comment seems to be proposing a third specification for AC common-mode voltage measured without the 100 MHz filter.

[Editor's note: CC: 162, 120G]

For CR TX, C2M host output, and C2M module output... Add 3rd limit with V_CMPP measured from DC to the measurement bandwidth (40 GHz). Maximum values not proposed in the comment.

Draft 3.1 comment R1-42

C/ 162	SC	162.9.4	P 16	6	L 30	# R1-42
Dawe, Pie	rs J G		NVIDI	A		
Comment	Туре	т	Comment Status	A		TX V_CMPP/SCMR (CC)
			pportunities to create previous draft. This a			es both, it can create
Suggestee	Reme	dy				
Keep	the new	w specs, bu	It reinstate the all-free	quencies	RMS limit. A	Also in Table 120G-1.
Response			Response Status	С		
ACCE	PT IN	PRINCIPLI	E			
for An Claus	nex 12 e 162.	0F and Cla Th <mark>is chang</mark>	use 163 and to 32 m	V for Ann	nex 120G and	V_CMPP-LF to 30 mV I w-frequency and high-
No ad	ditional	l changes a	are required.			

May 31, 2022

CI 162 SC 162.9.4.4

TR

L 39

Ghiasi, Ali

Comment Type

R2-18 Ghiasi Quantum LLC.Marvell Semiconductor, Inc.

Comment Status D

AC CM noise

Need to provide more clarity how to measure Vcm-p LF and HF.

Also should provide more clarity regarding the nature of LF and HF Vcm.

Equality in equation 162-7 may not hold given that LF Vcm expected to be uncorrelated and HF Vcm expect to be correlated.

P171

Response of the low pass filter should be defined.

SuggestedRemedy

Vcm LF maybe correlated and uncorrelated to the differential signal. Vcm LF when measured with equivalent time scope if correlated with the differential signal is measured with 4 MHz clock recovery unit, but if uncorrelated with the differential signal on equivalent time scope then measured with free run trigger. Vcm HF is correlated with differential signal and when measured with equivalent time scope is measured with 4 MHz clock recovery unit.

Recommended response of the low pass filter is based on 100 MHz BT4 filter.

Proposed Response Response Status W

PROPOSED REJECT

The following related presentation was reviewed by the task force at a previous ad hoc meeting:

https://www.ieee802.org/3/ck/public/22 06/ghiasi 3ck 01b 0622.pdf

The comment seems to be proposing to change the measurement of high-frequency common-mode noise to the correlated portion only.

The above presentation does not address this aspect.

Both correlated and uncorrelated noise are relevant.

For CR TX, C2M host output this comment suggests that...

LF component be measured differently depending on whether correlated with signal or not. HF component is assumed to be correlated. For the correlated cases the scope is synchronized with the data signal.

C/ 120G Ghiasi, Ali

Comment Type TR

SC 120G.3.1

Ghiasi Quantum LLC, Marvell Semiconductor, Inc.

/ 14

R2-20

AC CM noise

Due to equivalent time scope limitation where Vcm LF is uncorrelated with differential signal may need to separate the LF and HF bands where a physical 100 MHz BT4 filter is used for LF measurement where scope is in free run in case signal is uncorrelated and triggered by 4 MHz clock recovery in case LF common mode is synchronous to the differential signal. With real time scope there is no such limitation. considering the total LF+HF need to be <= 80 mV (please see other comment and supporting presentation) and to allow equivalent time scope.

P 259

Comment Status D

SuggestedRemedy

From the receiver perspective there is no reason to keep LF and HF bands as both signals are equally harmful given that anything => 50 KHz will not be tracked by the receiver, but the reason to keep the LF and HF bands is to allow use of equivalent time scope as in the case of LF Vcm likely to be uncorrelated ETS need to be in free run.

Add a line for sum of Vcmpp-LF + Vcmpp-HF <= 80 mV

Considering the total is 80 mV we could safely reduce LF to 25 mV and HF to 70 mV.

Proposed Response Response Status W

PROPOSED REJECT.

The following related presentation was reviewed by the task force at a previous ad hoc meeting:

https://www.ieee802.org/3/ck/public/22_06/ghiasi_3ck_01b_0622.pdf.

This comment is proposing adding a new specification for the sum of the measure values of V CMPP-HF and V CMPP-LF.

This comment addresses the same problem as comment R2-8, but in a different way. For task force discussion.

For C2M host output this comment suggests that... Add a new component equal to sum of measured V CMPPLF and V CMPPHF with maximum limit of 80 mV. Also, reduce limit on V CMPPLF to 25 mV and V CMPPHF to 70 mV.

Ghiasi, Ali	SC	120G.32	P 262	L 8	# R2-21
Ornasi, An			Ghiasi Quanti	um LLC,Marvell	Semiconductor, Inc.
Comment	Туре	TR	Comment Status D		AC CM noise
signal used f trigger differe consid	may n or LF r ed by ntial si lering t	eed to sepa measurement 4 MHz clock gnal. With the total LF+	cope limitation where Vcm rate the LF and HF bands w nt where scope is in free ru c recovery in case LF comm real time scope there is no HF need to be <= 75 mV () and to allow equivalent tim	where a physical n in case signal non mode is syn such limitation. please see other	I 100 MHz BT4 filter is is uncorrelated and chronous to the
Suggested	Reme	dy			
are eq the rea case o Add a	ually h ason to of LF V line fo	armful given keep the L cm likely to r sum of Vc	ective there is no reason to n that anything => 50 KHz v F and HF bands is to allow be uncorrelated ETS need mpp-LF + Vcmpp-HF <= 75 75 mV we could safely redu	will not be tracke use of equivaler to be in free run mV	d by the receiver, but nt time scope as in the
Proposed	OSED	REJECT.	Response Status W		

Also, reduce limit on V_CMPPLF to 20 mV and V_CMPPHF to 70 mV.

Ghiasi, Ali

Comment Type

SC 120G.3.1

TR

C/ 120G

L14 Ghiasi Quantum LLC.Marvell Semiconductor, Inc.

Comment Status D

P 259

AC CM noise

R2-8

At TP1a the Vcmpp-LF=32 mV and Vcm-HF=80 mV, as far as the receiver concern any low frequency > ~50 KHz is the same and in effect the CDR in the module must tolerate 112 mV of common mode. Given that TP1a is at input of CDR and all common modes are > 50 KHz from the receiver perspective are the same. There is no need to define low and high frequency bands for the TP1a common mode measurmeent. If this was a CR link then there is a benefit to have LF and HF common mode bands, where the low frequency passes through to TP3 by HF common mode gets attenuated by the cable. Applying 112 mV at input of the receiver is rather large and does have an impact of the link BER.

For comparisons table 162-11 CR TP2 where the amplitude is 1200 mV the Vcmpp-LF=30 mV and Vcmp-HF=80 mV if one scales for TP1a amplitude of 880 mV then the total common mode gets reduced to only 70 mV. C2M with total of 112 mV of common mode voltage when max amplitude is only 750 mV implies 60% higher common mode!

SuggestedRemedy

Replace low and high frequency common mode with Vcmpp measured with fourth-order Bessel-Thomson low-pass response with 40 GHz 3 dB bandwidth. Vcmpp<= 80 mV. larger value of Vcmpp results in BER penalty. Our measured results indicate typical TP0 has Vcmpp of <=65 including additional allocation for low frequency DC-DC convertors, at 80 mV there is even room for some amplifications but generally the channel attenuates the common mode.

Reducing Vcmpp=80 mV at TP1a considering amplitude differences with CR TP2 still the C2M TP1a has larger amplitude.

See ghiasi 3ck adhoc 01 052522

Proposed Response Response Status W

PROPOSED REJECT.

The following related presentation was reviewed by the task force at a previous ad hoc meeting:

https://www.ieee802.org/3/ck/public/22 06/ghiasi 3ck 01b 0622.pdf

This comment seems to be proposing that for the host output AC CM noise is measured broad band (without the 100 MHz high-pass or low-pass filter) with a limit of 80 mV. This comment addresses the same problem as comment R2-20, but in a different way. For task force discussion.

CI 120G S	C 120G.3.2	P 262	L7	# R2-9
Ghiasi, Ali		Ghiasi Quant	um LLC,Marvell	Semiconductor, Inc.
Comment Type	TR	Comment Status D		AC CM noise

It is not clear why TP4 common mode Vcmpp-LF=60 mV and Vcmpp-HF=80 mV and the combined 140 mV after adjusting for amplitude difference almost 2x larger than CR TP2! Optical modules have very well control low noise DC-DC convertors considering typical photo currents are in the microamp. From TP4 to TP5 there could be some limited coloring of common mode but considering TP4 LF are rather small there is not enough benefit to define LF and HF bands that complicates the measurement.

SuggestedRemedy

Replace low and high frequency common mode with Vcmpp measured with fourth-order Bessel-Thomson low-pass response with 40 GHz 3 dB bandwidth. Vcmpp<= 80 mV. larger value of Vcmpp results in BER penalty. Our measured results indicate typical TP0 has Vcmpp of <=65 including additional allocation for low frequency DC-DC convertors, at 75 mV there is even room for some amplifications but generally the channel attenuates the common mode

See supporting presentation ghiasi 3ck adhoc 01 052522

Proposed Response Response Status W PROPOSED REJECT. Resolve using the response to comment R2-8.

R2-8 and R2-9 appear to be proposing changes as an alternative to R2-20 and R2-21 for the C2M host output and module output...

Replace the V_CMPPLF and V_CMPPHF with a single parameter V_CMPP measured from DC to the measurement bandwidth (40 GHz) with a maximum limit of 80 mV.

TP1a and TP4 AC Common Mode Proposal

🖵 At TP1a

- Keep current 30 mV LF Vcm
- Keep Current 80 mV HF Vcm
- Total max LF+HF Vcm ≤ 80 mV total

At TP4

- Reduce LF Vcm to 25 mV
- Reduce HF Vcm to 75 mV
- Total max LF+HF Vcm ≤ 75 mV total.

A. Ghiasi

IEEE 802.3ck Task Force

Summary

- Common mode was generated on a SerDes test board where the primary common generation was by current imbalance between P/N drivers
 - The SerDes test board practically speaking had no LF common mode ~4 mV
 - If the common mode was larger >~ 5 mV then physical 100 MHz LP and 100 MHz HP filters would have been required with equivalent time scopes
- AC common mode per draft D3.2 with is an improvement overall compared to legacy single RMS measurement
 - Separating low frequency common mode typically asynchronous where high frequency common mode is synchronous allow use of equivalent time scope
 - The 100 MHz LF captures all DC-DC convertors
 - 100 MHz LF band is low enough not to capture synchronous broadband common modes

□ AC common mode levels in D3.2 draft for KR and CR given 1200 mV drivers are reasonable

 Just need to adjust AC common mode levels for C2M at TP1a and TP4 considering much smaller differential signal swing!

A. Ghiasi

IEEE 802.3ck Task Force

Slides 10 and 11 from:

https://www.ieee802.org/3/ck/public/22_06/ghiasi_3ck_01b_0622.pdf

11

Comments pertain only to 162 and 120G.

If we make changes there should these propagate to 163 and 120F?

Resolution options:

1. No changes.

2. Retain current parameters, but adjust values.

3. Add new parameter V_CMPPSUM = V_CMPPLF+V_CMPPHF with new max value 3a. Same as 3, but delete limit for V_CMPPHF.

4. Add new parameter V_CMPP measured without 100 MHz LPF or HPF (e.g., DC to 40 GHz) with new max value

4a. Same as 4, but delete parameter V_CMPPHF.

4b. Same as 4, but delete parameters V_CMPPHF and V_CMPPLF.

AC CM Noise, LF value Comment 1

C/ 120G	SC 120G	.3.2 P 26	2 L	.7	# R2-1
Ran, Adee		Cisco	Systems, Inc.		12
Comment 1	Type TR	Comment Status	D		AC CM noise
In Tabl	e 120G-3, N	Nodule output VCMPP-LF	maximum is	60 mV.	
respon	se to comm	s in other tables in the dra ent R1-29. The rationale fo odule output as well.			
	www.ieee80	2.org/3/ck/public/adhoc/m	ay04_22/ran_	_3ck_adhoc_0	1_050422.pdf.
Suggested		P-LF in Table 120G-3 fro	m 60 mV 22	2	
Proposed P				IIV.	
PROP	OSED ACCE	Response Status PT IN PRINCIPLE. F (max) in Table 120G-3		o 32 mV.	
	Та	ble 120G–1—Host output	characteristic	s at TP1a	
	P	arameter	Reference	Value	Units

Farameter	Kelerence	value	Units
Signaling rate, each lane (range)		$53.125\pm50~\text{ppm}^{a}$	GBd
DC common-mode output voltage (max)	120G.5.1	2.8	V
DC common-mode output voltage (min)	120G.5.1	-0.3	V
Single-ended output voltage (max)	120G.5.1	3.3	v
Single-ended output voltage (min)	120G.5.1	-0.4	v
Peak-to-peak AC common-mode voltage (max) Low-frequency, V _{CMPP-LF} High-frequency, V _{CMPP-HF}	120G.5.1	32 80	mV

Table 120G–3—Module output characteristics at TP4

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125 ^a	GBd
Peak-to-peak AC common-mode voltage (max) Low-frequency, $V_{CMPP-LF}$ High-frequency, $V_{CMPP-HF}$	120G.5.1	60 80	mV
Differential peak-to-peak output voltage (max) Short mode	120G.5.1	600	mV

Draft 3.1 comment R1-29

C/ 162	SC 162.9.3	P 166	L 30	# R1-29	
Ran, Adee		Cisco System	ns, Inc.		
Comment Ty		ment Status A		TX V_CMPP/SCMR (CC)	
(Cross-c	clause - 162, 163, 120F	, 120G)			
VCMPP	-LF max value of 60 ha	as no justification. In	the presentation	s mellitz 3ck 01 0122	
and m	Response	Response Sta			
freque distribu	ACCEPT IN PRINC	CIPLE.			
mVpp	Note: This commer	nt pertains specifical	Iv to V CMPP-I	F	
2.94	Note. This commen	it pertains specificat		Γ.	
We pre high-fr		nd 9 there is consen	isus to change th	ne specification to 30 mV fo	r 162.9.3
should	and 163.9.2.				
noise,			ensus to change	e the specification to 32 mV	for
HF cor of the	120F.3.1 and 120G	3.3.1.	1001 - 100 -		
	In 162.9.3 and 16	3.9.2 change V Cl	MPP-LF (max)	to 30 mV.	
Assumir	ng edi	· -	• •		
circuits		20G.3.1 change V	_CMPP-LF (ma	ax) to 32 mV.	
impairm	en Straw Poll #8 (chi	icago) and #9 (choo	050 1)		
The LF	F 100 0 0 14			ue for the V CMPP-LF (m	ax) value:
at the re	A: 30		9	2.265.5655.00 cl 25028.55500 c b a	1.00
	ue B: 45				
	cte C:60 sm #8 – A:17 B:11 (C: 5			
	#9 - A: 15 B: 5 C				
Same re defined	at				
the limit	Straw Poll # 10 (cr	hicago) and #11 (cl		value for the V_CMDD LE	(max) ual
so the p	A: 32	120G.5.1, 1 Suppor	n the following	value for the V_CMPP-LF	(max) van
SuggestedR					
In 162.9					
In 120F.	.3. #10 A: 17 B: 11 #11 A: 16 B: 6 (
	#11-A. 100.01	0. 1			
	Note: Straw poll and #9		same question	and answers except #8 is	chicago ru
	(prontany) and no	lo onecco one.			
		#10 and #11 are th nd #11 is choose o		on and answers except #1	0 is chicag
	[Editor's note: CC	120F, 120G, 163]			

AC CM Noise, tolerance Comments 2, 3, 22

C/ 120G	SC 120G.3.3	P2	65	L 16	# R2-2
Ran, Adee		Cisco	System	ns, Inc.	2000 C
Comment Typ	e TR	Comment Status	D		HI/MI AC CM tolerance

In Table 120G-7—Host input characteristics, AC common-mode voltage tolerance is expressed as RMS with minimum of 25 mV.

This used to match the module output maximum specification. The intent was to specify that a host has to tolerate what a module may generate.

Module output was later redefined to VCMPP (LF and HF) but the input tolerance specifications were not. This creates a disconnect between input and output specifications.

Note that while the module output is limited to 80 mV VCMPP-HF and 60 mV VCMPP-LF (requested to be changed to 32 mV in another comment), totaling up to 140 mV, a 25 mV RMS can create a peak-to-peak of 211 mV at a probability of 1e-5 (with a Gaussian distribution). In practice, LF and HF signals are not coherent, so the peak to peak of their sum will be even lower.

See also

https://www.ieee802.org/3/ck/public/adhoc/may04_22/ran_3ck_adhoc_01_050422.pdf slides 4-6.

SuggestedRemedy

In Table 120G–7 split the row "AC common-mode RMS voltage tolerance (min)" into two rows - High-frequency, VCMPP-HF, and Low-frequency, VCMPP-LF, with values 80 mV and 32 mV respectively.

In 120G.3.3.2, change the text from

"A host input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G-7."

To

"A host input shall meet all other specifications with low-frequency and high-frequency peak-to-peak AC common-mode voltages (see 120G.5.1) up to the limits specified in Table 120G–7. The low-frequency and high-frequency may both reach their maximum values in the same signal."

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

In Table 120G–7 split the row "AC common-mode RMS voltage tolerance (min)" into two rows - High-frequency, VCMPP-HF, and Low-frequency, VCMPP-LF, with values 80 mV and 32 mV respectively.

In 120G.3.3.2, change the text from: "A host input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G-7."

To: "A host input shall meet all other specifications with a combination of V_CMPP-LF and V_CMPP-HF (see 120G.5.1) up to the limits specified in Table 120G–7."

Implement with editorial license.

[Editor's note: Note that various comments are proposing changing the form of the AC CM voltage specifications which may require this response to be modified.]

C/ 120G	SC 120G.3.4	P 269	L 27	# R2-3
Ran, Adee		Cisco System	ns, Inc.	

Comment Type TR Comment Status D

HI/MI AC CM tolerance

In Table 120G–9—Module input characteristics, AC common-mode voltage tolerance is expressed as RMS with minimum of 25 mV.

This used to match the host output maximum specification. The intent was to specify that a module has to tolerate what a host may generate.

Host output was later redefined to VCMPP (LF and HF) but the input tolerance specifications were not. This creates a disconnect between input and output specifications.

Note that while the module output is limited to 80 mV VCMPP-HF and 32 mV VCMPP-LF, totaling up to 112 mV, a 25 mV RMS can create a peak-to-peak of 211 mV at a probability of 1e-5 (with a Gaussian distribution). In practice, LF and HF signals are not coherent, so the peak to peak of their sum will be even lower.

See also

https://www.ieee802.org/3/ck/public/adhoc/may04_22/ran_3ck_adhoc_01_050422.pdf slides 4-6.

SuggestedRemedy

In Table 120G–9 split the row "AC common-mode RMS voltage tolerance (min)" into two rows - High-frequency, VCMPP-HF, and Low-frequency, VCMPP-LF, with values 80 mV and 32 mV respectively.

In 120G.3.4.2, change the text from

"A module input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G–9."

To

"A module input shall meet all other specifications with low-frequency and high-frequency peak-to-peak AC common-mode voltages (see 120G.5.1) up to the limits specified in Table 120G–9. The low-frequency and high-frequency may both reach their maximum values in the same signal."

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE.

In Table 120G–9 split the row "AC common-mode RMS voltage tolerance (min)" into two rows - High-frequency, VCMPP-HF, and Low-frequency, VCMPP-LF, with values 80 mV and 32 mV respectively.

In 120G.3.4.2, change the text from: "A module input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G-9."

To: "A module input shall meet all other specifications with a combination of V_CMPP-LF and V_CMPP-HF (see 120G.5.1) up to the limits specified in Table 120G-9."

Implement with editorial license.

[Editor's note: Note that various comments are proposing changing the form of the AC CM voltage specifications which may require this response to be modified.]

AC CM Noise, tolerance Comments 2, 3, 22

SuggestedRemedy

Please change 25 mV RMS with 75 mV peak-peak Vcm which consist of LF and HF, please see comment at TP4.

Proposed Response Response Status W PROPOSED ACCEPT IN PRINCIPLE. Resolve using the response to comment R2-2.

Table 120G-1—Host output characteristics at TP1a

Parameter	Reference	Value	Units
Signaling rate, each lane (range)		$53.125 \pm 50 \text{ ppm}^{a}$	GBd
DC common-mode output voltage (max)	120G.5.1	2.8	v
DC common-mode output voltage (min)	120G.5.1	-0.3	y
Single-ended output voltage (max)	120G.5.1	3.3	v
Single-ended output voltage (min)	120G.5.1	-0.4	v
Peak-to-peak-AC-common-mode-voltage (max) Low-frequency, V _{CMPP-LF} High-frequency, V _{CMPP-HF}	120G.5.1	32 80	mV

Parameter	Reference	Value	Units
Signaling rate, each lane (nominal)		53.125 ^a	GBd
Peak-to-peak AC common-mode voltage (max) Low-frequency, V _{CMPP-LF} High-frequency, V _{CMPP-HF}	1206.5.1	60 80	mV
Differential peak-to-peak output voltage (max) Short mode	120G.5.1	600	mV

Table 120G-9-Module input characteristics

Parameter	Reference	Test point	Value	Units
Signaling rate, each lane (range)	120G.3.4.1	TP1	$53.125 \pm 100 \text{ ppm}$	GBd
Differential pk-pk voltage tolerance (min)	120G.5.1	TP1a	750	mV
AC common-mode BMS voltage tolerance (min)	120G.3.4.2	TP1a	25	mV
Differential-mode to common-mode return loss, <i>RI cd</i> (min)	120G.3.3.3	TP1	Equation (120G-2)	dB

120G.3.4.2 Module input AC common-mode voltage tolerance

A module input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G–9.

*A module input shall meet all other specifications with a combination of $V_{CMPP-LF}$ and $V_{CMPP-HF}$ (see 120G.5.1) up to the limits specified in Table 120G–9."

Table 120G-7-Host input characteristics

Parameter	Reference	Test point	Value	Units
Signaling rate, each lane (range)	120G.3.3.1	TP4a	53.125 ± 100 ppm	GBd
Differential peak-to-peak input voltage tolerance (min) for short mode for long mode	120G.5.1	TP4	600 845	mV
AC common-mode RMS voltage tolerance (min)	120G.3.3.2	TP4	25	mV
Differential-mode to common-mode return loss, <i>RLcd</i>	120G.3.3.3	TP4a	Equation (120G-2)	dB

120G.3.3.2 Host input AC common-mode voltage tolerance

A host input shall meet all other specifications with AC common-mode voltage (see 120G.5.1) up to the limit specified in Table 120G-7.

"A host input shall meet all other specifications with a combination of $V_{CMPP-LF}$ and $V_{CMPP-HF}$ (see 120G.5.1) up to the limits specified in Table 120G–7."

AC CM Noise, variable names Comment 4

C/ 163	SC 163.9.2.0	6 P 209	L 25	# R2-4
Ran, Adee		Cisco System	s, Inc.	
Comment	Type E	Comment Status D		AC CM nois
values		MPP-HF" is formatted such th this may be inherent to the Fra		
parame name i	eters defined in	as a delimiter for the qualifie this draft, different methods w For example, the "(ref)" and "	ere used such a	is superscript with
VCMP	P across the dra	is to rename the parameters, aft. I consider this a non-subst spacing in equation 163–1, tl	antial change. H	lowever, if there is a
Suggested	Remedy			
		of V_{CMPP-LF} to V_{CMPP F)} (make "(HF)" and "(HF)" s		nstances of V_{CMPP-
Proposed I	Response	Response Status W		
Chang V_{CM			P-LF} to V_{CM	PPHF} and

Propose to rename as follows:

 $V_{\text{CMPP-LF}} \rightarrow V_{\text{CMPPLF}}$

$$V_{\rm CMPP-HF} \to V_{\rm CMPPHF}$$

Annex 120G

C/ 120G	SC 120G.5.2	P 275	L 50	# R2-17
Dawe, Piers J	G	NVIDIA		12 TH 4 HITT
Comment Typ	e TR	Comment Status D		HO/MO EW

As we know, this Gaussian "weighting" function de-weights the sides of the histogram. allowing worse eve width (iitter) than otherwise. As healey 3ck 01a 1020 shows, for the same VEC, ESMW varies across channels by at least 130 mUI, plus some more for driver output edge rate. As e.g. dudek 3ck 01 0921 slide 7 shows, there can be a great variety of eves for only slightly different channels. It turns out that unsymmetric eves are possible (significantly different to left and right) - see presentation. The draft spec skews the spec to passing signals with relatively bad eye width, which endanger the link BER, while failing signals with usable VEC and eve height and better eve width.

We need better control of eve width, as has been pointed out in D3.0 comments I-107, I-108, I-115, I-116, I-211, I-212 and R1-55, with two clear alternative remedies proposed: the 10-sided mask or explicit ESMW limits.

SuggestedRemedy

Add ESMW spec limits:

Host output and module stressed input >=120 mUI; Module output and host stressed input >= 130 mUI. ESMW is defined around ts in the same way that ESMW is defined around Tcmid in 120E.

The reason for host spec being less than module is that almost all the bad stuff is in the host measurement, but not all the host channel and package impairments are in the module measurement, even "far end"

The limits in 120E are host 0.22 UI, module near 0.265 UI, module far 0.2 UI (with a less capable equaliser), so these specs are allowing much worse eyes than 120E, but not totally out of control.

Proposed Response Response Status W

PROPOSED REJECT.

This comment is a restatement of Draft 3.0 comments I-211 and I-212, and Draft 3.1 comment (R1-55). The resolution to these comments is provided in the following files: https://www.ieee802.org/3/ck/comments/draft3p0/8023ck D3p0 final closedcomments sor tedByNumber.pdf

https://www.ieee802.org/3/ck/comments/draft3p1/8023ck D3p1 final closedcomments sor tedBvNumber.pdf

The Draft 3.0 comments were rejected on the basis of no consensus to make the related changes. The result of straw poll #11 recorded in the response to comment I-211 (see above file) indicated consensus to not make these proposed changes. The Draft 3.1 comment was rejected on the basis of being a restatement of previous comments. In this new comment, no new evidence to support the change is provided; but an alternative suggested remedy is provided.

The following related presentation was reviewed by the task force at a previous ad hoc meeting

https://www.ieee802.org/3/ck/public/22_06/dawe_3ck_01_0622.pdf

C/ 120G SC 1200	5.3.1	P 259	L 18	# R2-19
Ghiasi, Ali		Ghiasi Quant	tum LLC,Marvell	Semiconductor, Inc.
Comment Type TR	Commen	t Status D		HO/MO EW
slight adjustment te establish measure	to EW measurem ement already on e receiver. Addir	ent. EW measu all commercial s ng EW is indepe	urement with DFE scopes. Adding r ndent to current I	P1a and TP4 require Ereceiver is well min EW at TP1a and imits for VEO and
SuggestedRemedy				
For comment I-10 measured data with				osed 175 mU but new
For comment I-10 that we don't defin proposed value of	8 and I-115 at TP e optical stress ir 150 mUI should	4 ESMW/EW w nput for measure be increased to	as initially propos ement and compl 185 mU at TP4.	sed 150 mU but given liance at TP4 the initial y at ts+0.5 UI and is flat
Proposed Response	Response	Status W		
resolution to these https://www.ieee8 tedByNumber.pdf These comments	a restatement of E comments is pro D2.org/3/ck/comm were closed on th y poll #11 recorde us to not make th ent, no new evide	ovided in the foll ments/draft3p0/8 me basis of no co ad in the response mese proposed co ence to support t	owing file: 023ck_D3p0_fina onsensus to mak se to comment I-2 hanges.	I-115, and I-116. The al_closedcomments_sor e the related changes. 211 (see above file) vided; but an

D3.0 comment I-107

	C/ 120G	SC	120G.3.1	P 258	L 21	# <u>I-107</u>
	Ghiasi, Ali			Ghiasi Quan	tum LLC,Marvell	Semiconductor, Inc.
	Comment 1	Гуре	TR	Comment Status R		HO eye width
	window which i window CL120 channe is as ci	v with V n effec v for typ E min E el with p itical a	EO and VI t reduces in bical high lo ESMW=220 bathologica s VEC/VEC	ed in draft 1.4 with the intro EC limits not passing the EC limits not passing the sos channel EW can be as 0 mU. The 120 mUl can b I reflections/jitter may resu 0, without explicit EW spec nt interoperability risk.	ask force introduce eye opening. With little as 120 mUI e further degrade ilt in EW <100 mU	ed Gaussian window n current Gaussian , in comparisons d for lower loss JI. Eye width opening
,	Suggested	Remed	y			
	simple	st, othe	r alternativ	mUI specifications which we would be to go back to re as demonstrated in		
	in a court		na o o maion	/3/ck/public/21_01/dawe_3	ck_01_0121.pdf	
	in a court		na o o maion	de demonorier de m	ck_01_0121.pdf	
	https://	www.ie	na o o maion	/3/ck/public/21_01/dawe_3	ck_01_0121.pdf	
	https:// Response REJEC	www.ie	ee802.org	/3/ck/public/21_01/dawe_3		

D3.0 comment I-108

C/ 120G SC 120G.3.2	P 261	L 12	# I-108
Ghiasi, Ali	Ghiasi Quanti	um LLC,Marvell \$	Semiconductor, Inc.
Comment Type TR	Comment Status R		MO eye width
window with VEO and V which in effect reduces window for typical high I CL120E min farend ESI channel with pathologic is as critical as VEC/VE window there is significa SuggestedRemedy An explicit ESMW>=150 simplest, other alternatii introduce 10 sides mash https://www.ieee802.org) mUI specifications which is re would be to go back to re as demonstrated in /3/ck/public/21_01/dawe_30	sk force introduc ve opening. With little as 120 mUl, can be further d t in EW <100 mU fircations and with s available in the ctangular mask w	ed Gaussian window n current Gaussian in comparisons egraded for lower loss JI. Eye width opening h current Gaussian scope might be the
Response	Response Status U		
REJECT.			
There is no consensus t	o make the proposed chang	jes.	
For details, see the repo	onse to comment i-211.		

D3.0 comment I-115

C/ 120G SC 120G.3.3.5.2 P 267 L 39 # 1-115 Ghiasi, Ali Ghiasi Quantum LLC, Marvell Semiconductor, Inc. Comment Type TR Comment Status R HI eve width ESMW/EW were removed in draft 1.4 with the introduction of the +/- 50 mUI rectangular window with VEO and VEC limits not passing the task force introduced Gaussian window which in effect reduces implicit minimum receiver eye opening. With current Gaussian window for typical high loss channel EW can be as little as 120 mUl, in comparisons CL120E min farend ESMW=200 mU. The 120 mUI can be further degraded for lower loss channel with pathological reflections/jitter may result in EW <100 mUI. Eye width opening is as critical as VEC/VEO, without explicit EW specifications and with current Gaussian window there is significant interoperability risk. SuggestedRemedy An explicit ESMW>=150 mUI specifications which is available in the scope might be the simplest, other alternative would be to go back to rectangular mask with +/- 50 mUI or introduce 10 sides mask as demonstrated in https://www.ieee802.org/3/ck/public/21 01/dawe 3ck 01 0121.pdf Response Response Status U REJECT. There is no consensus to make the proposed changes. For details, see the reponse to comment i-211.

D3.0 comment I-116

C/ 120G	SC	120G.3.4	P2	69	L 19	# I-116
Ghiasi, Ali			Ghias	i Quantur	n LLC,Marvell	Semiconductor, Inc.
Comment Ty	pe	TR	Comment Status	R		MI eye width
window v which in window f CL120E channel is as criti window t SuggestedRe An explic simplest,	with \ effect or type min I with p ical a here emed at ES , othe	/EO and VI et reduces in pical high k ESMW=22(pathologica is VEC/VEC is significa fy SMW>=175 er alternativ	EC limits not passin mplicit minimum rec oss channel EW car 0 mU. The 120 mU Il reflections/jitter m O, without explicit E nt interoperability ris	g the task ceiver eye n be as lit I can be f ay result i W specifi sk. which is a ack to rect	k force introduce opening. With the as 120 mU jurther degrade in EW <100 mU cations and with available in the	, in comparisons d for lower loss JI. Eye width opening h current Gaussian scope might be the
https://w	ww.ie	ee802.org	/3/ck/public/21_01/c	lawe_3ck	_01_0121.pdf	
Response			Response Status	U		
REJECT						
There is	no co	onsensus te	o make the propose	d change	S.	
THOIC IS						

D3.0 comment I-211

C/ 120G	SC 120G.5.2	P 277	L6	# I-211
Dawe, Piers	JG	NVIDIA		
Comment T	ype TR	Comment Status R		EH/VEC method mask

This draft has a (de-)weighted rectangular eye mask spec with mask height = max(EHmin, EA/VECmax) and effective mask width ~2x0.03 to 2x0.035 UI, although it is described as a histogram 2x0.05 UI wide. This is too narrow; compare 120E with ESMW of 0.2 or 0.22 UI. It's half as wide as TDECQ with histograms extending to +/-0.07 UI.

This de-weighted histogram might have worked if there had been a guarantee that no host or module would ever produce a fast, highly jittered eve, but we don't have that guarantee. Work needs to be done to repair the hole in the spec.

See healey 3ck 01a 1020 slide 6, orange dots for +/-0.025 UI which is the closest to the current draft. For VEC of 10 dB, EW can be anywhere in the range 160 to 290 mUI: an almost 2:1 range. Driver risetime is not reported; if it is always the COM default slowestreasonable 7.5 ps, then even worse EW is possible with faster or peaked drivers. This is too much worse than 120E. As the plot shows, a wide range of eye widths are possible, so we don't need to allow the worst ones by an oversight.

De-weighting the sides of the histogram with flat top and bottom, rather than chamfering the corners, means that infringing the corners by a mile is counted the same as infringing by an inch, which is bad,

Most of the weight of samples is in the middle of the eye which is a waste of measurement time; we know the corners will fail first so we should measure them, not the middle Hence the 2-offsets approach of TDEC and healey_3ck_01a_1020.

The effective BER criterion of the (de-)weighted mask seems to be around 1e-4, not 1e-5 as before.

The distribution of repeated measurements is very skewed.

We need an eye mask that's more eye shaped, so that a higher proportion of the samples near the boundary are measured at full weight and contribute properly to the measurement. Eye mask measurement with a 10-sided mask has been pre-programmed into scopes for about 20 years, we should use established tools and methods where they work well

The 10-sided mask controls the eye on the diagonal more strongly than the rectangular uniform histogram/mask because hits are collected over the time of the chamfer, rather than just in corners. The de-weighted rectangular histogram controls the eye on the diagonal more weakly than the rectangular uniform histogram/mask because hits are collected just in corners, and de-weighted.

SuggestedRemedy

Change from a 4-cornered weighted mask with corners at t = ts+/-0.05, V = v +/-H/2 to a 10-cornered unweighted mask with corners at t = ts+/-1/16, ts+/-0.05, ts+/-3/32, V = y +/-H/2, v +/-H*0.4, v, v is near VCmid, VCupp or VClow (vertically floating, as in D3.0). H is max(EHmin, Eve Amplitude * 10/(-VECmax/20)). Eve Amplitude is AVupp, AVmid or AVlow, as today.

This simple scalable method gives VEC results 0.5 to 1 dB more optimistic than the unweighted rectangular mask. It can remain as the EH and VEC limits are revised in the light of experience.

Response Response Status U

REJECT.

Straw polls #8 and #9 indicate strong consensus to continue with a weighted window approach. Straw polls #10 and #11 indicate strong consensus to continue with the currently specified weighting function.

There is no consensus to make the proposed changes to the draft.

Straw poll #8 (chicago rules) Straw poll #9 (choose one) I support the following direction of the eye opening specification method: A. weighted window per Draft 3.0 (as is or with some improvements) B. revert to uniform weighted window per D2.1 (D3.0 comment #212) C. 10pt mask per D3.0 comment #211 #8 A: 31 B: 12 C: 6 #9 A 27 B 5 C 1

Note: Straw poll #8 and #9 are the same guestion and answers except #8 is chicago rules (pick any) and #9 is choose one.

Straw poll #10 (chicago rules) Straw poll #11 (choose one) To address eye width issues expressed, I support the following method to modify the weighted window: A. no change B. "wider" weighting mask (e.g., larger sigma, alternate distribution shape) C. add jitter specification D. add eye width specification (i.e., per D3.0 comments 107, 108, 115, 116) #10 A: 26 B: 15 C: 9 D:9 #11 A: 19 B: 5 C: 3 D: 4

Note: Straw poll #10 and #11 are the same question and answers except #10 is chicago rules (pick any) and #11 is choose one.

D3.0 comment I-212

C/ 120G SC	120G.5.2	P 277	L6	# 1-212
Dawe, Piers J G		NVIDIA		
Comment Type	TR	Comment Status R		EH/VEC method mask
eyes to pass histogram wi is measured histogram - c TDECQ with This weightir eye shape, it	, while failin dth still app at around + depending o histograms ng is equival t weakens th	has the effect of destroyin g less bad slow eyes. It g lies. With a weighting star /-0.035 UI rather than the n eye shape. Compare 12 extending twice as wide, t lent to relaxing the VEC sp he spec most for the worst on the 1e-5 intended	ives the false in adard deviation +/-0.05 UI with 20E with ESMM to +/-0.07 UI. bec by 1.5 to 2 of	npression that the of 0.02 UI, the eye height the unweighted V of 0.2 or 0.22 UI, and dB - but it depends on the
SuggestedReme		rine re-o intended.		
Remove the revision anyw	Gaussian w way) approp ved, says th	veighting and set the eye h riately. ghiasi_3ck_01_07 at the minimum eye heigh	21, which was	not given the presentation
Response		Response Status U		
REJECT.				
There is no o	consensus t	o make the proposed char	nges.	
For details, s				

D3.1 comment R1-55

C/ 120G	SC	120G.5.2	P2	75	L 50	# R1-55
Dawe, Pier	rs J G		NVID	A		5
Comment	Туре	TR	Comment Status	R		EH/VEC test method
width,	wheth	er from jitter		ich e	ndanger the link B	s with relatively bad eye ER, while failing signals
Suggested	Reme	dy				
			d solutions and fix the change in step.	ne pr	oblem. Notice that	t the apparent VEC and
Response			Response Status	U		
REJE	CT.					
This comm			tement of D3.0 com	men	ts i-211 and i-212	recorded in the following
https:// tedBy			/3/ck/comments/dra	ft3p0	0/8023ck_D3p0_fir	nal_closedcomments_sor
No fur	ther ev	idence nor	any alternate remed	lies a	are provided.	
			l in the response to urement method.	com	ment i-211) indicat	ed consensus to make

120G ERL parameters Comments 6

			L 25	# R2-6
	Cisco	System	s, Inc.	8
TR	Comment Status	D		ERL
		TR Comment Status	TR Comment Status D	Cisco Systems, Inc. TR Comment Status D ost output at TP1a is computed using the procedure in

Table 120G–2 includes some but not all of the parameters required by 93A.5 (Table 93A–4, base standard + additions in this draft).

The missing parameters are: f_b, f_r, L, M, and DER0.

 f_b and f_r appear in Table 120G–11 but the other parameters do not. However, all of these parameters appear in Table 120F–8 with values that match Annex 120G (and same values of f_b and f_r as in Table 120G–11).

The mismatches between Table 120G–11 and Table 120G–11 are in the continuous time filter parameters (gDC, gDC2, fz, fp1, fp2), DFE parameters (Nb, bbmax, bbmin) and the value of eta0; but these parameters are not used in calculation of ERL, so their values are irrelevant. Therefore, Table 120F–8 is a suitable reference for the required parameters for ERL.

Applies also in 120G.3.2.3 (Module output ERL), 120G.3.3.4 (Host input ERL), and 120G.3.4.4 (Module input ERL)

SuggestedRemedy

In 120G.3.1.2 and in 120G.3.3.4, change "with the values in Table 120G–2" to "with the values in Table 120G–2 and Table 120F–8". In 120G.3.2.3 and in 120G.3.4.4, change "with the values in Table 120G–6" to "with the values in Table 120G–6 and Table 120F–8".

Proposed Response Response Status W

PROPOSED ACCEPT IN PRINCIPLE. Implement the suggested remedy with editorial license.

120G.3.1.2 Host output effective return loss (ERL)

ERL of the host output at TP1a is computed using the procedure in 93A.5 with the values in Table 120G–2 and with the value of T_{fx} equal to twice the delay between the test fixture test connector and the test fixture host-facing connection minus 0.2 ns.

Change as follows:

ERL of the host output at TP1a is computed using the procedure in 93A.5 with the values in Table 120G–2 and Table 120F–8, and with the value of Tfx equal to twice the delay between the test fixture test connector and the test fixture host-facing connection minus 0.2 ns.

Similar for the other subclauses below.

120G.3.3.4 Host input ERL

ERL of the host input at TP4a is computed using the procedure in 93A.5 with the values in Table 120G-2.

Host input ERL at TP4a shall be greater than or equal to ERL (min) specified in Table 120G-7.

120G.3.2.3 Module output ERL

ERL of the module output at TP4 is computed using the procedure in 93A.5 with the values in Table 120G–6 and with the value of T_{fx} equal to twice the delay between the test fixture test connector and the test fixture module-facing connection minus 0.2 ns.

120G.3.4.4 Module input ERL

ERL of the module input at TP1 is computed using the procedure in 93A.5 with the values in Table 120G-6.

Module input ERL at TP1 shall be greater than or equal to ERL (min) specified in Table 120G-9.

Clause 162

TX R_peak Comment #12

C/ 162	SC	162.9.4	P 166	L 40	# R2-12
Dawe, Pie	ers J G		NVIDIA		
Comment	Type	TR	Comment Status D		Rpeak
aroun	d dawe	3ck_02b	roposed to adjust the Rpeak 0422 revealed that the curre el that are used in COM any	ent limit is not co	

SuggestedRemedy

Reduce Rpeak (min) from 0.397 to 0.385 to align with the other normative specs and parameters in the draft.

Proposed Response Response Status W

PROPOSED REJECT.

This comment is a restatement of comment R1-43 against Draft 3.1 with a different value in the suggested remedy. The resolution to the comment is provided in:

https://www.ieee802.org/3/ck/comments/draft3p1/8023ck_D3p1_final_closedcomments_sor tedByNumber.pdf

The response to the comment was closed on the basis of straw poll #20 which indicated consensus to not make the proposed change.

In this new comment, no new evidence to support the change is provided; but an alternative suggested remedy is provided.

D3.1 R1-43

C/ 162	SC	162.9.4	P 166	L 40	# R1-43
Dawe, Pie	rs J G		NVIDIA		
Comment	Type	TR	Comment Status R		TX V_peak (CC)

The revision to the mated test fixtures' reference loss to be more like real measurements makes a small difference to the expected Rpeak.

SuggestedRemedy

Reduce Rpeak (min) by 1% from 0.397 to 0.393.

Response

Response Status U

REJECT.

The following related presentation was reviewed by the task force: https://www.ieee802.org/3/ck/public/22_04/dawe_3ck_02b_0422.pdf

Per straw poll #20, there is no consensus to make the proposed changes.

Strawpoll #20 (direction) I support reducing the specified host output R_peak (min) value. Yes: 9 No: 14

No: 14

TX SNR_ISI Comment 13

C/ 162	SC	162.9.4.3	P 171	L 21	# R2-13
Dawe, Piers J G			NVIDIA		2. (J. (J. (J. (J. (J. (J. (J. (J. (J. (J
Comment	Туре	TR	Comment Status D		SNR_ISI

This says "For calculation of SNR_ISI using Equation (120D–8) a value of 6 is used for Nb". This definition is used for CR (where the real Nb is 12), KR (where the real Nb is 12) and C2C (where the real Nb is 6). This is inconsistent. D3.1 comment R1-21 proposes Np=12+Dp+1, 12 being the number of main DFE taps in the reference equaliser.

While additional reflections from the channel can create further ISI, there is no particular reason to believe that they will fall between 6 and 12 UI (equalisable in CR and KR, but not in C2C), and the combination of weak ISI controlled by this spec * reflection squared controlled by ERL specs should be very small whether it falls inside or outside this arbitrary range. The additional ISI from the primary reflectors in the PMD and channel (controlled by ERL) are more important.

Editorial: two different things called Nb in one clause is bad.

SuggestedRemedy

Use the correct Nb value for each case as in the COM parameter tables, as 120D.3.1.7 does: 12 for CR and KR, 6 for C2C.

Proposed Response Response Status W

PROPOSED REJECT.

The values for N_b for 162, 163 and 120F were adopted by the TF based on consensus from straw polls #1, #2 and #3, respectively from the 04/11/22 ad hoc meeting, and are documented in the following file:

https://www.ieee802.org/3/ck/public/22_04/minutes_3ck_0422b.pdf

The comment does not provide new evidence to support the proposed change.

Suggested remedy:

- Nb = 12 for 162 & 163
- Nb = 6 for 120F

https://www.ieee802.org/3/ck/public/22_04/minutes_3ck_0422b.pdf

Straw Poll #1:

In Clause 163, for the value of Nb as used in Equation (120D-8), I support (choose one) A. 6 (consistent with D3.1) B. 12 (consistent with Table 162-19) Results: A: 15, B: 11

Straw Poll #2:

In Clause 162, for the value of Nb as used in Equation (120D-8), I support (choose one) A. 6 (consistent with D3.1) B. 12 (consistent with Table 162-19) Results: A: 15, B: 10

Straw Poll #3:

In Annex 120F, for the value of Nb as used in Equation (120D-8), I support (choose one) A. 6 (consistent with D3.1) B. 12 (consistent with Table 162-19) Results: A: 20, B: 6

CA Com Parameter Comment 16

C/ 162	SC	162.11.7	P 1	88	L 46	# R2-16
Dawe, Piers J G		NVID	IA		42	
Comment	Туре	TR	Comment Status	D		COM parameter

93A.1.1 says "It is recommended that the scattering parameters be measured with uniform frequency step no larger than Delta f from a start frequency no larger than fmin to a stop frequency of at least the signaling rate fb". But the test fixtures are defined to 50 GHz, and other specs such as RLdc are defined to 40 GHz. 93A.1.5 says "the filtered voltage transfer function may need to be extrapolated (both to DC and to one half of the sampling frequency) for this computation. The extrapolation method and sampling frequency should be chosen carefully to limit the error in the COM computation."

For cable COM, there is the sinc function for NRZ signalling + driver Gaussian filter Tr + minimum ~16 dB cable loss even at 40 GHz + PCBs + packages + Butterworth filter + extra pole of the CTLE. The result is quite tolerant to the extrapolation. For ERL, there is sinc function, Tr, Butterworth filter, and Tukey filter (17.7 dB at 50 GHz), and twice the test fixture trace loss. There can be very little energy between 50 GHz and

53.125 GHz where the Tukey filter cuts off.

Extrapolating RL (as opposed to IL) is not reliable anyway.

SuggestedRemedy

To ensure consistency between measurements, define the maximum measurement frequency for COM as 50 GHz, then COM is calculated with careful extrapolation as mentioned.

Define the maximum frequency for ERL as 50 GHz, with no extrapolation.

Both these could be achieved by inserting a row for fmax, 50 GHz, in the tables for COM parameter values.

Apply to 162 and 120G which rely on test fixtures with connectors that are defined to 50 GHz.

Apply to 163 and 120F ERL also because 50 GHz is a natural break point for network analysers.

Unless we find that doing so opens a hole in the spec, apply to 163 and 120F COM also.

Proposed Response Response Status W

PROPOSED REJECT.

This comment is a restatement of Draft 3.1 comment R1-52 and of Draft 3.0 comment I-186.

The resolution to these comments is provided in the following files:

https://www.ieee802.org/3/ck/comments/draft3p0/8023ck_D3p0_final_closedcomments_sor tedByNumber.pdf

https://www.ieee802.org/3/ck/comments/draft3p1/8023ck_D3p1_final_closedcomments_sor tedByNumber.pdf

This comment provides no new evidence to support the proposed changes.

Suggested remedy:

- COM max frequency = 50 GHz
- ERL max frequency = 50 GHz

Apply to 162, 162, 120F and 120G

93A.1.1 (COM)

It is recommended that the scattering parameters be measured with uniform frequency step no larger than Δf from a start frequency no larger than f_{\min} to a stop frequency of at least the signaling rate f_b .

93A.51.1 (ERL)

93A.5.1 Pulse time-domain reflection signal

ERL is derived from a unity pulse time-domain reflection signal, PTDR(t). PTDR(t) is defined at the test points defined in the Physical Layer specification that invokes the ERL method. PTDR(t) may be acquired directly from an appropriately filtered time domain reflectometer (TDR), or derived mathematically from measured differential scattering parameters S(t) and transmitter and receiver filters, according to the procedure in this subclause. See 93A.1.1 for scattering parameters measurement recommendations including frequency step, start frequency, and stop frequency.

CA Com Parameter Comment 16

D3.1 C#52

C/ 162	SC	162.11.7.1	P 1	86	L7	# R1-52
Dawe, Pie	ers J G		NVID	IA		
Comment	Туре	т	Comment Status	R		CA COM parameter
freque freque	ency ste	ep no larger at least the	than Delta f from a	start fr But the	equency no larg	e measured with uniform er than fmin to a stop defined to 50 GHz, and
Suggeste	dRemed	dy				
Define 120G		aximum freq	uency for COM an	d ERL,	40 or 50 GHz.	Clauses 162, 163, 120F,
Response			Response Status	С		
REJE	CT.					
follow https://	ing com	ment report eee802.org/	t			lause 120G, in the al_closedcomments_sor
No ne	w evide	ence has be	en provided.			
		3A.1.1 (for C at least fb.	OM) and subclaus	e 93A.5	5.1 (for ERL) rec	ommends a maximum
Furthe range		sis is requir	ed to support chan	ges to t	he COM or ERL	s-parameter frequency
15 -14-		00 4005	1000 4001			

[Editor's note: CC 120F, 120G, 163]