Super-PON Link Budget Analysis

IEEE P802.3cs, February 27, 2020 Liang Du (Google)

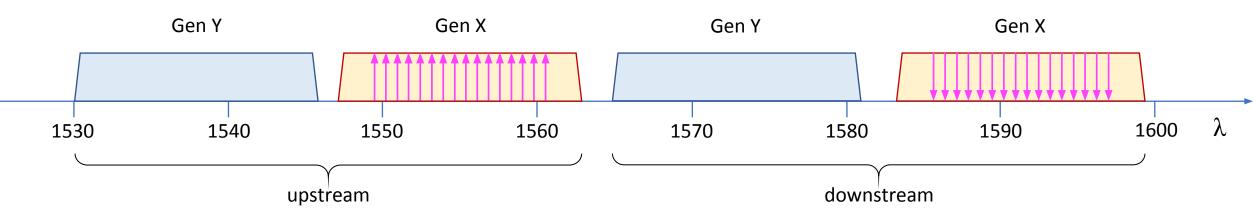
Link budget required

Highlighted optical component losses were revised down to represent *premium* grade components to help reduce the very challenging objectives

		typical	worst case	Total loss	
Component	count	loss [dB]	loss [dB]	[dB]	comments
Fiber [km]	50	0.24	0.24	12	Revised numbers from Vince (Corning)
Connectors	6	0.2	0.5	1.5	Count from Hawaii meeting (11/19)
Splices	17	0.05	0.2	1	7 for components/cable changes, 10 for inline
AWG	1	4	4	4	5.5 dB from previous contributions1.5 dB for MZI to reduce IL
Splitter (x64)	1	20.5	20.5	20.5	Assumes 3.5 dB per 2x -0.5 dB. Premium splitters assumed
Aging Margin	1	2	2	2	Industry practice
Total				41	

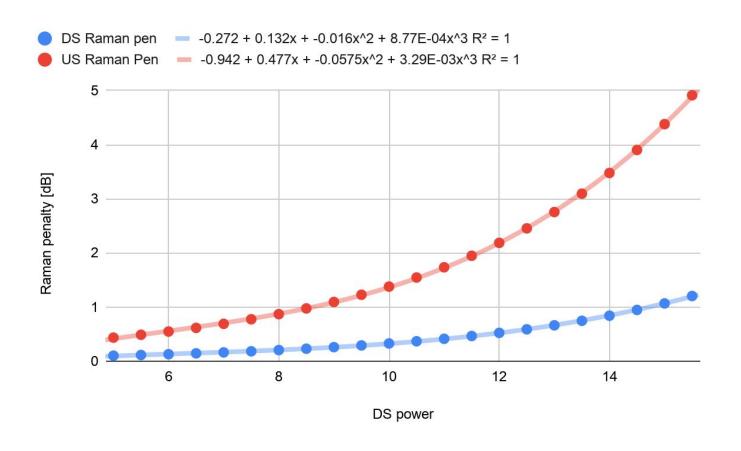
Google Fiber

Assumptions

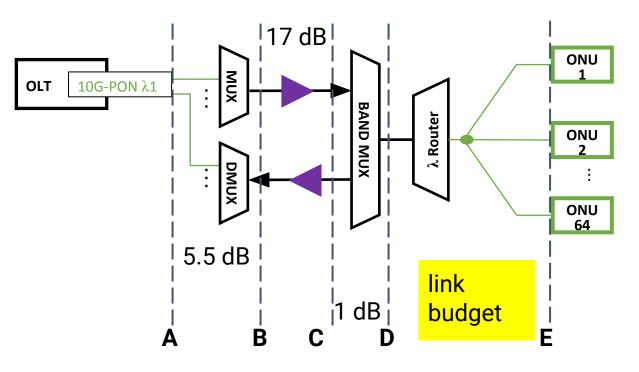

- Raman penalties for US and DS are based on minimum DS powers + 2dB, to allow for channel non-uniformity in the DS channels
- US sensitivity refers to the power into the bidi unit after the optical amplifiers. This is a part of the mux/amp unit

TDP US [dB]	2	
TDP DS [dB]	1	
ONU Rx power [dBm]*	-31	@ ONU interface
OLT Rx Power [dBm]**	-39.1	@ ER=6.0, into the Mux/Amp

- * 1.5 dB better than PR40 sensitivity for 10G-EPON. 1.5 dB benefit was recommended for LDPC FEC in <u>powell_3ca_1b_0118</u>
- ** From interpolation of results shown in 20190521_Zhao, with 0.6 dB reduction to account for burst-mode transmission

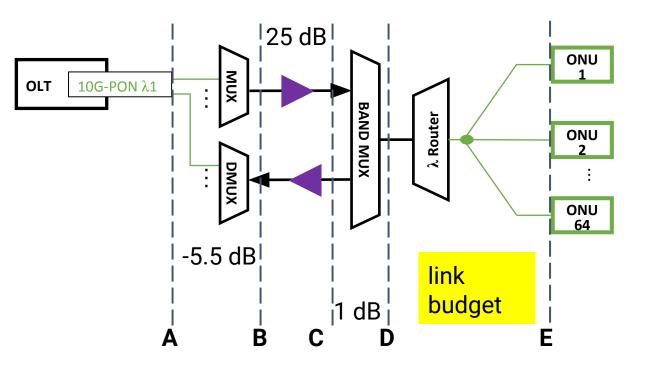

Assumed wavelength plan

P2MP:


- Just calculating for Raman in current 10G generation
- Assume all DS channels are launched at the same power

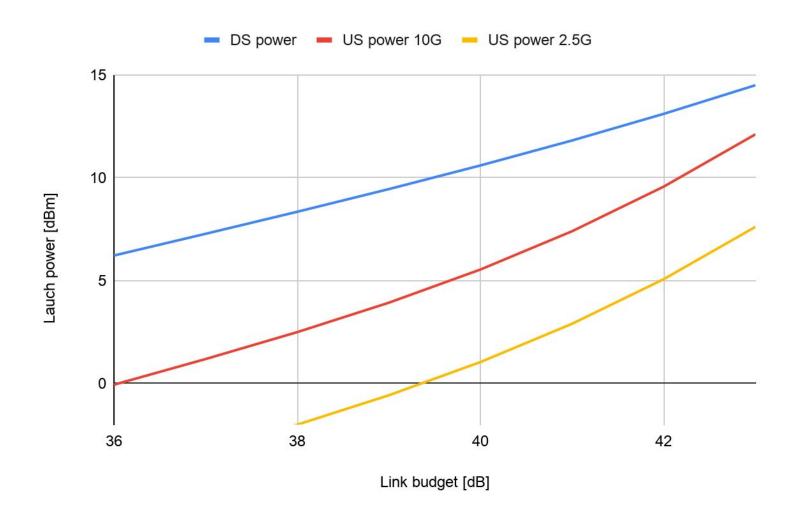
Raman penalty: DS in L; US in C

- Numerically solving the Raman penalty ODE produced this penalty graph
- Exact wavelengths are given in slide 7 of <u>20190312_Ogawa</u>
- This curve is used to calculate Raman power penalties for results in this deck


Power levels - DS

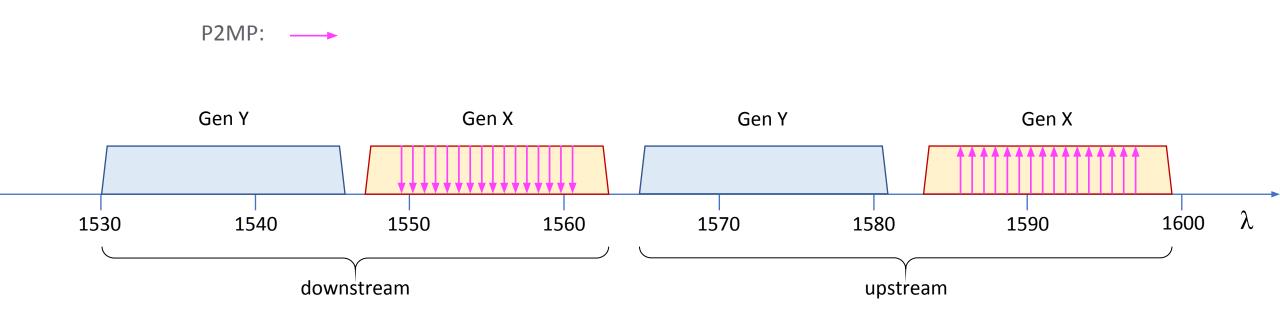
Location	DS/WL [dBm]	DS total [dBm]	
Α	PowDS-11	PowDS+1	
В	PowDS-16	PowDS-4	
С	PowDS+1	PowDS+13	
D	PowDS	PowDS+12	
Е	-31 (PR40 -1.5)		

- Pow DS is defined as the power exiting the mux/amp
- This is the last active equipment before the signal enters the ODN
- Link budget accounts for maximum transmission penalties, including 1-dB for CD and Kerr NL, and the calculated amount for Raman

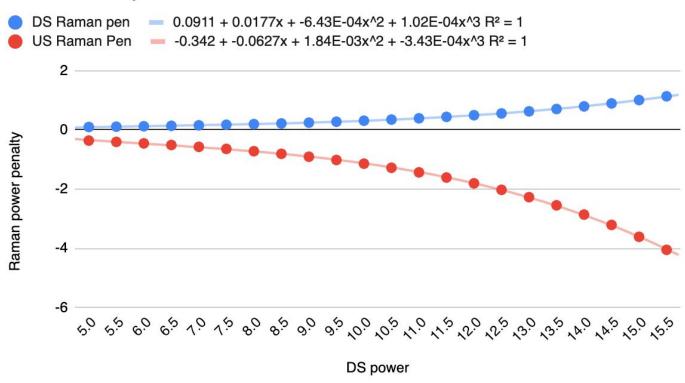

Power levels - US

Location	US/WL [dBm]	US total [dBm]	
Α	-20.6		
В	-15.1	-3.1	
С	-40.1	-28.1	
D	-39.1	-27.1	
Е	PowUS		

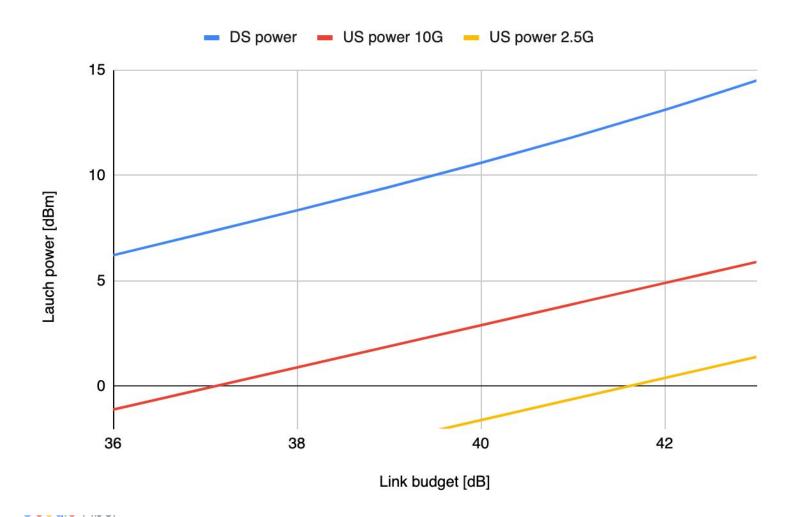
- PowUS is defined as the power exiting the ONU
- US sensitivity is defined as the power needed at the mux/amp - ODN interface
- Link budget accounts for maximum transmission penalties, including 2-dB for CD and Kerr NL, and the calculated amount for Raman


Required output power

- The required US and DS output power is shown in the graph
- Raman penalty is based on min_DS_power + 2 dB Accounts for the DS not being installed at lowest possible power for all channels
- >3 dB of Raman penalty leads to >7 dBm of ONU output power


Proposal: Use C-band for DS and L-band for US

 Placing the higher powered DS channels on shorter wavelengths (relative to US channels) produces Raman gain on the US channels, rather than loss


Raman penalty: DS in C; US in L

DS Raman pen and US Raman Pen

- Using the C-band for DS and L-band for US moves the higher powered DS signals to the shorter wavelength side
- This creates Raman gain for the US signals, rather than Raman power penalty
- The increase is power should not be included in the link budget as it will contain noise, since it comes from modulated signals rather than a CW pump
- Assume ZERO Raman penalty for the US signals

Required output power

- The required US and DS output power is shown in the graph
- Without Raman penalties, the required 10G US ONU launch power require is 3.9 dBm, almost identical to that of NG-PON2
- DS powers required at 11.9 dBm per wavelength

11

Summary

	Required Launch powers [dBm]				
	DS	US 10G	US 2.5G		
DS: L - US: C	11.9	7.4	2.9		
DS: C - US: L	11.9	3.9	-0.6		

- Premium grade optical splitters and CAWGs were assumed to reduce the link budget required
- Operating in DS L-band and US C-band, as per NG-PON2 and this task force's previous intention, results in a large Raman penalty, requiring very high ONU launch powers to close the link budget
- Operating in DS C-band and US L-band avoids Raman penalties on the US channels, allowing the link budget to be close using similar ONU output powers to NG-PON2 specifications

Thank you