SC-FEC sublayer lane alignment process comments and remedies

In support of comments against IEEE 802.3ct D1.2

Comment #: 6, 11, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36

Leon Bruckman (Huawei)

IEEE P802.3ct Task Force, teleconference, March 2020

References

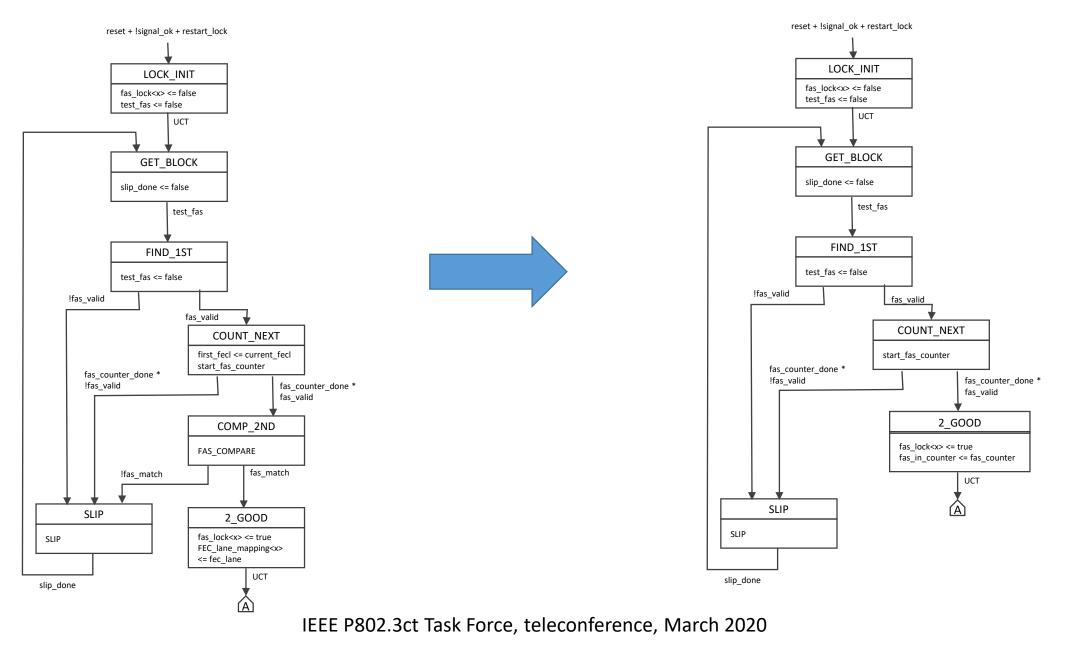
- 100GBASE ZR Draft 802.3ct_D1p1.pdf, Private Area
- ITU-T G.709 Interfaces for the optical transport network
- ITU-T G.798 Characteristics of optical transport network hierarchy equipment functional blocks
- trowbridge_3cn_01a_0119.pdf, IEEE P802.3cn Task Force, Long Beach, March 2019
- bruckman_3ct_01a_200213, IEEE P802.3ct Task Force, teleconference February 13th, 2020
- bruckman_3ct_02a_200213, IEEE P802.3ct Task Force, teleconference February 13th, 2020

General

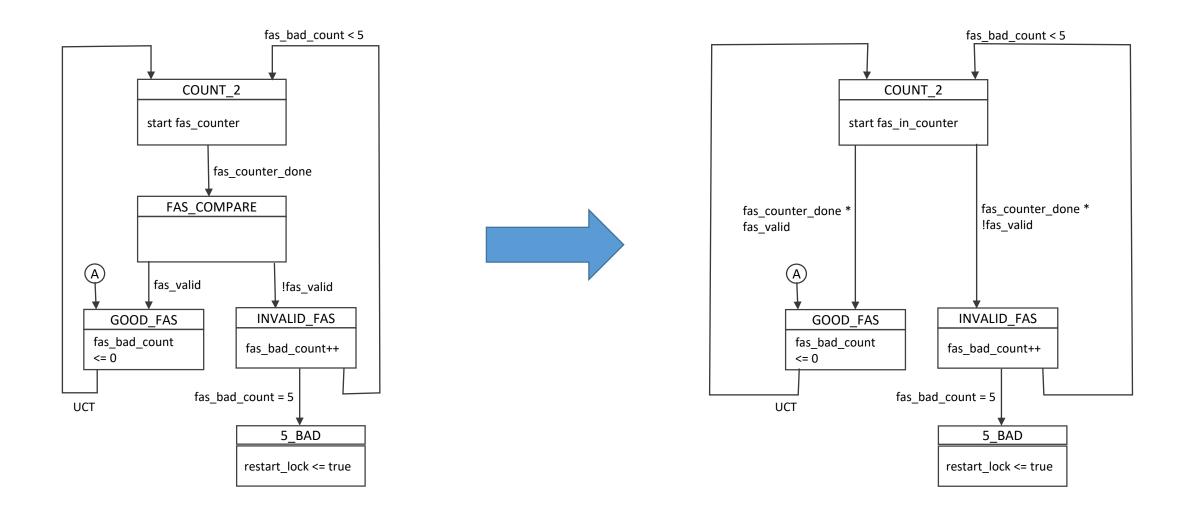
- During the February 13th, 2020 Teleconference I presented 2 contributions related with the alignment process and indication behavior in D1.2:
 - bruckman_3ct_01a_200213
 - bruckman_3ct_02a_200213
- As a conclusion of the technical discussions during the Teleconference I made some fine-tuning to the requested changes.
 - I removed the request to change to a fixed FAS subset for alignment/alignment loss monitoring.
- In this contribution I present the detailed changes to D1.2 related with my comments.
- The reason and advantages of the proposed changes are described in the above mentioned contributions.

Summary of changes to D1.2

- Lane synchronization (comments: 15, 18, 21, 22, 23, 24, 25, 26, 27, 30):
 - Separate the lane identification from the lane synchronization process
 - Keep frame start location during re-synchronization
 - Changes:
 - Update the synchronization and synchronization loss state diagrams and related variables and counters
 - New lane identification state diagram and related variables and counters
- Deskew (comments: 19, 31, 32):
 - Fix deskew state diagram
 - Update the state diagram and related variables
- SIGNAL_OK indication (comments: 11, 17, 20, 28, 29):
 - Add stability counter
 - New fec_align_indication state diagram and related variables and counters
- Related changes to clause 153.2.3.1 and MDIO (comments: 6, 34, 35, 36)


SC-FEC frame synchronization

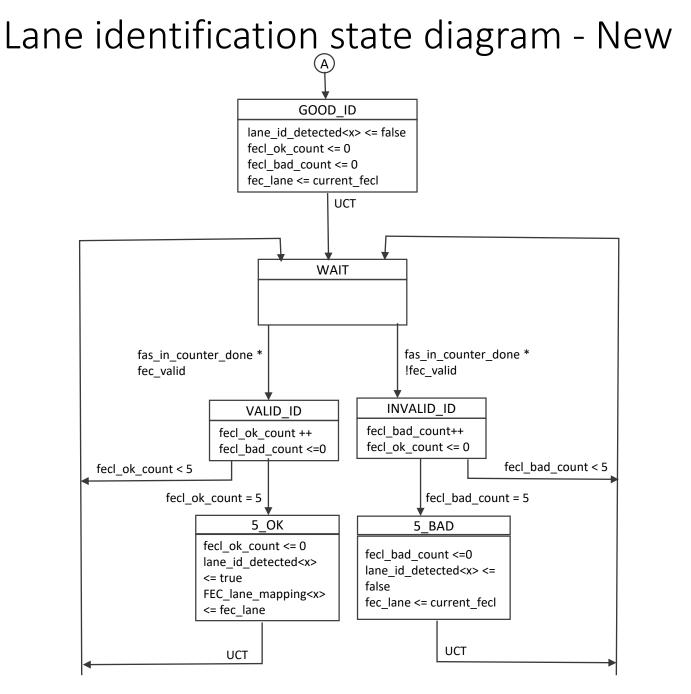
- Change
 - fas_valid
 - Boolean variable that is set to true if the received 6-octet sequence is a valid frame alignment signal. The frame alignment signal consists of 40 known bits and 8 variable bits. The sequence is considered to be valid if four of the first five octets match the known bits of the pattern described in 153.2.3.2.4, and the 6th octet represents a numerical value in the range 0 to 239 with the most-significant bit transmitted first.
- Remove
 - FAS_COMPARE function and fas_match variable
- Add
 - fas_in_counter
 - Counts the 16 320 octets between the starting position of one FAS and the expected starting position of the next FAS on a FEC lane for the alignment verification state machine.
 - Note: This counter has been added so that the FAS position is kept during alignment loss until a new FAS position is discovered by the alignment state machine.


SC-FEC synchronization state diagram details

- Synchronization (1):
 - Lane identification variables set removed from states COUNT_NEXT and 2_GOOD.
 - COMP_2ND state removed to simplify the state machine since the FAS_COMPARE function is not required now.
 - fas_in_counter used by the SC-FEC synchronization loss detection state machine is set to the fas_counter value only once a new FAS location is identified.
- Synchronization loss (2):
 - FAS_COMPARE state removed to simplify the state machine since the FAS_COMPARE function is not required now.
 - Use fas_in_counter instead of fas_counter, so that during a re-synchronization the FAS location is retained until a new FAS location is identified by the synchronization state machine.
 - Note that if the synchronization loss was due to BER, the new FAS location will be equal to the previous one.

SC-FEC synchronization state diagram (1) - Change

SC-FEC synchronization state diagram (2) - Change



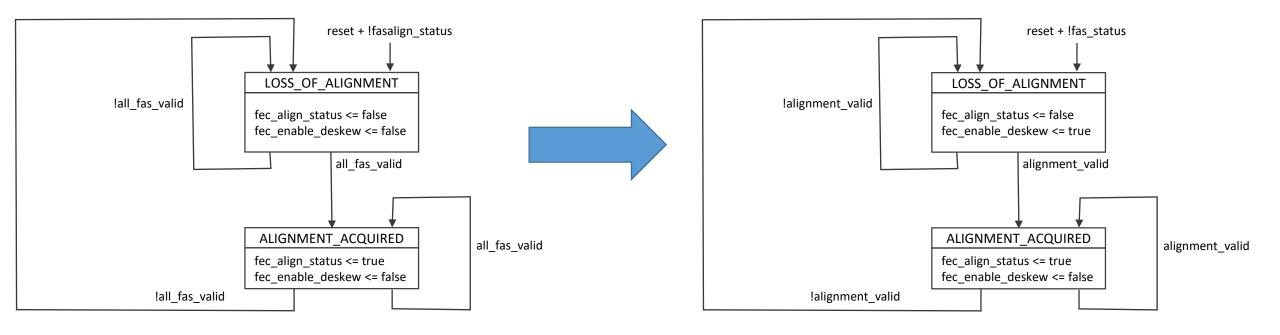
Lane identification

- Change
 - current_fecl
 - A variable that holds the FEC lane number corresponding to the current FAS that is recognized on a given lane of the PMA service interface. It is compared to the variable first_fecl to confirm that the location of the FAS has been detected.
 - fec_lane
 - A variable that holds the FEC lane number (0 to 19) received on lane x of the PMA service interface when fas_lock<x>=true. The FEC lane number is determined by the 6th octet of the FAS, interpreted with the most significant bit transmitted first, modulo 20.
- Add
 - fecl_valid
 - Boolean variable that is set to true if the received 6th FAS octet represents a numerical value in the range 0 to 239 with the most-significant bit transmitted first, and its modulo 20 value is equal to the variable fec_lane.
 - lane_id_detected<x>
 - Boolean variable that is set to true when the receiver has detected the lane identification for a given lane on the PMA service interface, where x = 0:19.
 - fecl_ok_count
 - Counts the number of consecutive 6th FAS octets that match the expected value for a given FEC lane.
 - fecl_bad_count
 - Counts the number of consecutive 6th FAS octets that don't match the expected value for a given FEC lane.
 - Note: This process keeps the last known FEC_lane_mapping until a new fec_lane is discovered by the lane identification state machine.

Line identification state diagram details

- Start only after synchronization acquired.
- New lane_id_detected<x> x=0:19 variable added
 - Added also as an input to MDIO
- New Lane ID accepted if the same Lane ID value is detected 5 frames in a row.
 - New value written to FEC_lane_mapping<x> for the deskew state machine and the MDIO.
 - Correspondent lane_id_detected<x> set to "TRUE".
- If a different value than the accepted Lane ID value is detected 5 frames in a row.
 - Test new value for acceptance.
 - Correspondent lane_id_detected<x> set to "FALSE".
- The accepted Lane ID is retained until a new Lane ID is detected.
- Note that if the Lane ID loss was due to BER, the new Lane ID will be equal to the previous one.

IEEE P802.3ct Task Force, teleconference, March 2020


SC-FEC Deskew

- Add
 - fas_status
 - A Boolean variable that is true when all lanes are in fas_lock and false when at least one lane is not in fas_lock.
 - alignment_valid
 - Boolean variable that is set true if all lanes are aligned. It is true when each lane is in fas_lock, with each lane locked to a unique FEC lane number, and when all lanes are deskewed. Otherwise, alignment_valid is false.
 - fec_enable_deskew
 - A Boolean variable that enables and disables the deskew process. Received bits may be discarded whenever deskew is enabled. The alignment start shall be maintained when fec_align_status is false. It is set to true when deskew is enabled and set to false when deskew is disabled.

SC-FEC Deskew state diagram details

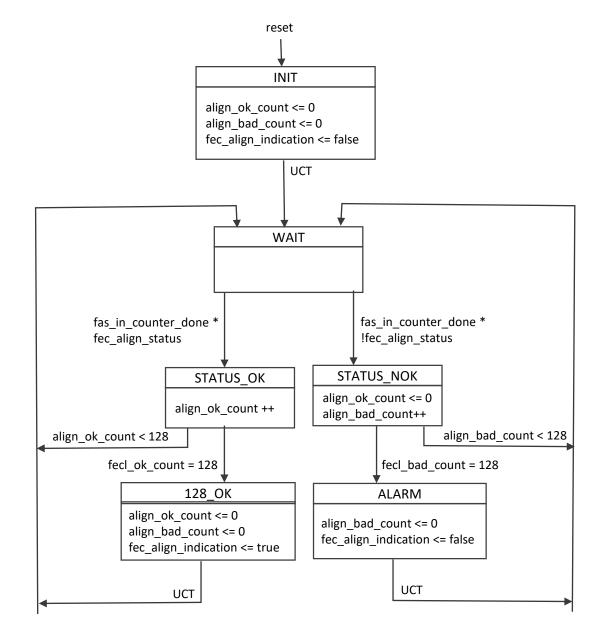
- Replace all_fas_valid (not defined) with alignment_valid.
- Replace fasalign_status (not defined) with fas_status.
- Set fec_enable_deskew to "TRUE" in the LOSS_OF_ALIGNMENT state to start deskew process.
- Note that these changes make the Deskew state diagram similar to Figure 82–14: PCS deskew state diagram.
- Define fec_enable_deskew in a similar way as defined in clause 91.5.4.2.1, but do not allow bits to be discarded during the deskew process.
 - The deskew process may be frequently started due to high pre-FEC BER, if we allow discarding bits during the process communication will be impaired.

SC-FEC deskew state diagram - Change

SIGNAL_OK indication

Change

 The SIGNAL_OK parameter of the FEC:IS_SIGNAL.indication primitive can take one of two values: OK or FAIL. The value is set to OK when the FEC receive function has identified codeword boundaries as indicated by fec_align_status fec_align_indication equal to true, and block delineation has been acquired as indicated by rx_block_lock equal to true. That value is set to FAIL when the FEC receive function is unable to reliably establish codeword boundaries as indicated by fec_align_status fec_align_indication equal to false, or rx_block_lock equal to false. When SIGNAL_OK is FAIL, the rx_bit parameters of the FEC:IS_UNITDATA_i.indication primitives are undefined.


• Add

- fecl_align_indication
 - Boolean variable that is set to true if the variable fec_align_status was true for the last 128 FEC lane frames. Otherwise it is set to false.
- align_ok_count
 - Counts the number of consecutive FEC lane frames for which fecl_align_status was true.
- align_bad_count
 - Counts the number of FEC lane frames for which fecl_align_status was false.
- Note: This process provides a stable SIGNAL_OK even for high pre-FEC scenarios. To provide for the case of intermittent out-of-locks (fec_align_status is false), the integrating timer is not reset to zero until an in-lock (fec_align_status is true) condition persists continuously for 128 SC-FEC frames (~3 msec).

SIGNAL_OK monitor state diagram details

- State machine runs continuously and monitors fec_align_status.
- New fec_align_indication variable defined to contain the "debounced" fec_align_status value.
 - fec_align_indication drives the SIGNAL_OK parameter
- fec_align_indication is set to "TRUE" when align_ok_count reaches 128 and to "FALSE" when align_bad_count reaches 128.
- align_ok_count cleared each time a loss of alignment is detected.
- align_bad_count cleared only if align_ok_count reaches 128.
- The scheme provides for intermittent losses and is similar to the scheme defined in ITU-T G.798.
 - Note that ITU-T G.798 defines a 3 msec integration time per lane, while the proposed scheme is one process for the whole signal.

SIGNAL_OK monitor state diagram - New

IEEE P802.3ct Task Force, teleconference, March 2020

Other clauses updates

• 45.2.1.186aj SC-FEC lane mapping, lane 0 register (Register 1.2250)

The assignment of bits in the SC-FEC lane mapping, lane 0 register is shown in Table 45–150ai. When the SC-FEC described in Clause 153 detects and locks the FAS-the lane identification on PMA service interface lane 0, the detected SC-FEC lane number is recorded in this register. The contents of the SC-FEC lane mapping, lane 0 register is valid when the SC-FEC FAS lock 0 bit (1.2246.0)-lane identification 0 bit (1.xxxx.0) is set to one and is invalid otherwise (see 45.2.1.186ah.9) (see 45.2.1.186ai.8).

• 153.2.3.1 Lane lock and deskew

The SC-FEC receive function forms 20 bit streams by concatenating the bits from each of the 20 PMA:IS_UNITDATA_i.indication primitives in the order they are received. It obtains lock to the FAS as specified by the SC-FEC synchronization state diagram shown in Figure 153–7 and detects the lane identification as specified by the lane identification state diagram shown in Figure 153-x. After frame alignment lock and lane identification is achieved on all 20 lanes, all inter-lane Skew is removed as specified by the FEC alignment state diagram shown in Figure 153–8. The FEC receive function shall support a maximum Skew of TBD ns between FEC lanes and a maximum Skew Variation of TBD ns.

Alignment loss events are expected frequently in cases for which the pre-FEC BER is high. To provide a stable alarm indication to the upper layers, the SC-FEC sublayer alarm indication generation is shown in Figure 153-y.

- Table 153–2–MDIO/SC-FEC Status variable mapping
 - In row 2 column 4 change: fec_align_status to fec_align_indication
 - Add the following row after the second row:

SC-FEC line identification x, x=0 to 19	SC-FEC line identification status 1	1.xxxx.7:0	lane_id_detected <x></x>
	and 2 registers	1.zzzz.11:0	

MDIO additions (1)

45.2.1.186ai SC-FEC lane identification status 1 register (Register 1.xxxx)

The assignment of bits in the SC-FEC lane identification status 1 register is shown in Table 45–150xx.

Bit(s)	Name	Description	R/W ^a
1.xxxx.15:8	Reserved	Value always 0	RO
1.xxxx.7	SC-FEC lane identification 7	1 = Lane 7 lane identified 0 = Lane 7 lane not identified	RO
1.xxxx.6	SC-FEC lane identification 6	1 = Lane 6 lane identified 0 = Lane 6 lane not identified	RO
1.xxxx.5	SC-FEC lane identification 5	1 = Lane 5 lane identified 0 = Lane 5 lane not identified	RO
1.xxxx.4	SC-FEC lane identification 4	1 = Lane 4 lane identified 0 = Lane 4 lane not identified	RO
1.xxxx.3	SC-FEC lane identification 3	1 = Lane 3 lane identified 0 = Lane 3 lane not identified	RO
1.xxxx.2	SC-FEC lane identification 2	1 = Lane 2 lane identified 0 = Lane 2 lane not identified	RO
1.xxxx.1	SC-FEC lane identification 1	1 = Lane 1 lane identified 0 = Lane 1 lane not identified	RO
1.xxxx.0	SC-FEC lane identification 0	1 = Lane 0 lane identified 0 = Lane 0 lane not identified	RO

Table 45–150xx—SC-FEC lane identification status 1 register bit definitions

^aRO = Read only

MDIO additions (2)

45.2.1.186ai.1 SC-FEC lane identification 7 (1.xxxx.7)

When read as a one, bit 1.xxxx.7 indicates that the SC-FEC receiver has acquired the identification of lane 7 of the PMA service interface. When read as a zero, bit 1.xxxx.7 indicates that the SC-FEC receiver has not acquired the identification of lane 7 of the PMA service interface. This bit reflects the state of lane_id_detected<7> (see 153.2.4.1.1).

45.2.1.186ai.2 SC-FEC lane identification 6 (1.xxxx.6)

When read as a one, bit 1.xxxx.6 indicates that the SC-FEC receiver has acquired the identification of lane 6 of the PMA service interface. When read as a zero, bit 1.xxxx.6 indicates that the SC-FEC receiver has not acquired the identification of lane 6 of the PMA service interface. This bit reflects the state of lane_id_detected<6> (see 153.2.4.1.1).

45.2.1.186ai.3 SC-FEC lane identification 5 (1.xxxx.5)

When read as a one, bit 1.xxxx.5 indicates that the SC-FEC receiver has acquired the identification of lane 5 of the PMA service interface. When read as a zero, bit 1.xxxx.5 indicates that the SC-FEC receiver has not acquired the identification of lane 5 of the PMA service interface. This bit reflects the state of lane_id_detected<5> (see 153.2.4.1.1).

45.2.1.186ai.4 SC-FEC lane identification 4 (1.xxxx.4)

When read as a one, bit 1.xxxx.4 indicates that the SC-FEC receiver has acquired the identification of lane 4 of the PMA service interface. When read as a zero, bit 1.xxxx.4 indicates that the SC-FEC receiver has not acquired the identification of lane 4 of the PMA service interface. This bit reflects the state of lane_id_detected<4> (see 153.2.4.1.1).

45.2.1.186ai.5 SC-FEC lane identification 3 (1.xxxx.3)

When read as a one, bit 1.xxxx.3 indicates that the SC-FEC receiver has acquired the identification of lane 3 of the PMA service interface. When read as a zero, bit 1.xxxx.3 indicates that the SC-FEC receiver has not acquired the identification of lane 3 of the PMA service interface. This bit reflects the state of lane_id_detected<3> (see 153.2.4.1.1).

45.2.1.186ai.6 SC-FEC lane identification 2 (1.xxxx.2)

When read as a one, bit 1.xxxx.2 indicates that the SC-FEC receiver has acquired the identification of lane 2 of the PMA service interface. When read as a zero, bit 1.xxxx.2 indicates that the SC-FEC receiver has not acquired the identification of lane 2 of the PMA service interface. This bit reflects the state of lane_id_detected<2> (see 153.2.4.1.1).

45.2.1.186ai.7 SC-FEC lane identification 1 (1.xxxx.1)

When read as a one, bit 1.xxxx.1 indicates that the SC-FEC receiver has acquired the identification of lane 1 of the PMA service interface. When read as a zero, bit 1.xxxx.1 indicates that the SC-FEC receiver has not acquired the identification of lane 1 of the PMA service interface. This bit reflects the state of lane_id_detected<1> (see 153.2.4.1.1).

45.2.1.186ai.8 SC-FEC lane identification 0 (1.xxxx.0)

When read as a one, bit 1.xxxx.0 indicates that the SC-FEC receiver has acquired the identification of lane 0 of the PMA service interface. When read as a zero, bit 1.xxxx.0 indicates that the SC-FEC receiver has not acquired the identification of lane 0 of the PMA service interface. This bit reflects the state of lane_id_detected<0> (see 153.2.4.1.1).

MDIO additions (3)

45.2.1.186aj SC-FEC lane identification status 2 register (Register 1.zzzz)

The assignment of bits in the SC-FEC lane identification status 2 register is shown in Table 45–150zz.

Bit(s)	Name	Description	R/W ^a
1.zzzz.15:12	Reserved	Value always 0	RO
1.zzzz.11	SC-FEC lane identification 19	1 = Lane 19 lane identified 0 = Lane 19 lane not identified	RO
1.zzzz.10	SC-FEC lane identification 18	1 = Lane 18 lane identified 0 = Lane 18 lane not identified	RO
1.zzz.9	SC-FEC lane identification 17	1 = Lane 17 lane identified 0 = Lane 17 lane not identified	RO
1.zzzz.8	SC-FEC lane identification 16	1 = Lane 16 lane identified 0 = Lane 16 lane not identified	RO
1.zzzz.7	SC-FEC lane identification 15	1 = Lane 15 lane identified 0 = Lane 15 lane not identified	RO
1.zzz.6	SC-FEC lane identification 14	1 = Lane 14 lane identified 0 = Lane 14 lane not identified	RO
1.zzz.5	SC-FEC lane identification 13	1 = Lane 13 lane identified 0 = Lane 13 lane not identified	RO
1.zzzz.4	SC-FEC lane identification 12	1 = Lane 12 lane identified 0 = Lane 12 lane not identified	RO
1.zzz.3	SC-FEC lane identification 11	1 = Lane 11 lane identified 0 = Lane 11 lane not identified	RO
1.zzzz.2	SC-FEC lane identification 10	1 = Lane 10 lane identified 0 = Lane 10 lane not identified	RO
1.zzzz.1	SC-FEC lane identification 9	1 = Lane 9 lane identified 0 = Lane 9 lane not identified	RO
1.zzz.0	SC-FEC lane identification 8	1 = Lane 8 lane identified 0 = Lane 8 lane not identified	RO

Table 45–150zz—SC-FEC lane identification status 2 register bit definitions

IEEE P802.3ct Task Force, teleconference, March 2020

MDIO additions (4)

45.2.1.186aj.1 SC-FEC lane identification 19 (1.zzzz.19)

When read as a one, bit 1.zzzz.19 indicates that the SC-FEC receiver has acquired the identification of lane 19 of the PMA service interface. When read as a zero, bit 1.zzzz.19 indicates that the SC-FEC receiver has not acquired the identification of lane 19 of the PMA service interface. This bit reflects the state of lane_id_detected<19> (see 153.2.4.1.1).

45.2.1.186aj.2 SC-FEC lane identification 18 (1.zzzz.18)

When read as a one, bit 1.zzzz.18 indicates that the SC-FEC receiver has acquired the identification of lane 18 of the PMA service interface. When read as a zero, bit 1.zzzz.18 indicates that the SC-FEC receiver has not acquired the identification of lane 18 of the PMA service interface. This bit reflects the state of lane_id_detected<18> (see 153.2.4.1.1).

45.2.1.186aj.3 SC-FEC lane identification 17 (1.zzzz.17)

When read as a one, bit 1.zzzz.17 indicates that the SC-FEC receiver has acquired the identification of lane 17 of the PMA service interface. When read as a zero, bit 1.zzzz.17 indicates that the SC-FEC receiver has not acquired the identification of lane 17 of the PMA service interface. This bit reflects the state of lane_id_detected<17> (see 153.2.4.1.1).

45.2.1.186aj.4 SC-FEC lane identification 16 (1.zzzz.16)

When read as a one, bit 1.zzzz.16 indicates that the SC-FEC receiver has acquired the identification of lane 16 of the PMA service interface. When read as a zero, bit 1.zzzz.16 indicates that the SC-FEC receiver has not acquired the identification of lane 16 of the PMA service interface. This bit reflects the state of lane_id_detected<16> (see 153.2.4.1.1).

45.2.1.186aj.5 SC-FEC lane identification 15 (1.zzzz.15)

When read as a one, bit 1.zzzz.15 indicates that the SC-FEC receiver has acquired the identification of lane 15 of the PMA service interface. When read as a zero, bit 1.zzzz.15 indicates that the SC-FEC receiver has not acquired the identification of lane 15 of the PMA service interface. This bit reflects the state of lane_id_detected<15> (see 153.2.4.1.1).

45.2.1.186aj.6 SC-FEC lane identification 14 (1.zzzz.14)

When read as a one, bit 1.zzzz.14 indicates that the SC-FEC receiver has acquired the identification of lane 14 of the PMA service interface. When read as a zero, bit 1.zzzz.14 indicates that the SC-FEC receiver has not acquired the identification of lane 14 of the PMA service interface. This bit reflects the state of lane_id_detected<14> (see 153.2.4.1.1).

MDIO additions (5)

45.2.1.186aj.7 SC-FEC lane identification 13 (1.zzzz.13)

When read as a one, bit 1.zzzz.13 indicates that the SC-FEC receiver has acquired the identification of lane 13 of the PMA service interface. When read as a zero, bit 1.zzzz.13 indicates that the SC-FEC receiver has not acquired the identification of lane 13 of the PMA service interface. This bit reflects the state of lane_id_detected<13> (see 153.2.4.1.1).

45.2.1.186aj.8 SC-FEC lane identification 12 (1.zzzz.12)

When read as a one, bit 1.zzzz.12 indicates that the SC-FEC receiver has acquired the identification of lane 12 of the PMA service interface. When read as a zero, bit 1.zzzz.12 indicates that the SC-FEC receiver has not acquired the identification of lane 12 of the PMA service interface. This bit reflects the state of lane_id_detected<12> (see 153.2.4.1.1).

45.2.1.186aj.9 SC-FEC lane identification 11 (1.zzzz.11)

When read as a one, bit 1.zzzz.11 indicates that the SC-FEC receiver has acquired the identification of lane 11 of the PMA service interface. When read as a zero, bit 1.zzzz.11 indicates that the SC-FEC receiver has not acquired the identification of lane 11 of the PMA service interface. This bit reflects the state of lane_id_detected<11> (see 153.2.4.1.1).

45.2.1.186aj.10 SC-FEC lane identification 10 (1.zzzz.10)

When read as a one, bit 1.zzzz.10 indicates that the SC-FEC receiver has acquired the identification of lane 18 of the PMA service interface. When read as a zero, bit 1.zzzz.10 indicates that the SC-FEC receiver has not acquired the identification of lane 10 of the PMA service interface. This bit reflects the state of lane_id_detected<10> (see 153.2.4.1.1).

45.2.1.186aj.11 SC-FEC lane identification 9 (1.zzzz.9)

When read as a one, bit 1.zzzz.9 indicates that the SC-FEC receiver has acquired the identification of lane 9 of the PMA service interface. When read as a zero, bit 1.zzzz.9 indicates that the SC-FEC receiver has not acquired the identification of lane 9 of the PMA service interface. This bit reflects the state of lane_id_detected<9> (see 153.2.4.1.1).

45.2.1.186aj.12 SC-FEC lane identification 8 (1.zzzz.8)

When read as a one, bit 1.zzzz.8 indicates that the SC-FEC receiver has acquired the identification of lane 8 of the PMA service interface. When read as a zero, bit 1.zzzz.8 indicates that the SC-FEC receiver has not acquired the identification of lane 8 of the PMA service interface. This bit reflects the state of lane_id_detected<8> (see 153.2.4.1.1).