Further test results for 400GBASE-LR4

Yu Xu
Jialong Shuai
Xinyuan Wang

IEEE P802.3cu Task Force, Indianapolis, Septeməer 2019

EML Transmitttr at High Temperature

- Uncooled transmitters are tested with different chromatic dispersion in 1328 nm , compared to the proposed spec in lewis 3cu adhoc 061919 v2 :
- The TDECQ is excessively high at 10 km positive dispersion
- The penalty introduced by high temperature is expected to be about 0.5 dB
- Optimization for best TDECQ will increase SECQ by at least 0.2 dB

Measured TDECQ-SECQ

SiP Transmitter at Room Temperature

- In mazzini_3cu_adhoc_070319 and mazzini_3cu_adhoc_082119, a SiP transmitter at a CWDM wavelength was tested with 10km worst case negative chromatic dispersion, compared to the proposed spec in lewis_3cu_adhoc_061919_v2 :
- The TDECQ value is 3.49 dB with only 0.41 dB margin
- Tx OMA - TDECQ fails to meet the proposed spec due to insufficient optical launching power.

	Measurement (BOL in lab)	Proposed Spec $($ EOL)	Margin
TX OMA (dBm)	2.23^{*}	>0.5	
TDECQ - SECQ (dB)	2.03	--	0.41
TDECQ (dB)	3.49	<3.9	-0.36
TX OMA-TDECQ (dBm)	-1.26	>-0.9	

Observation \& Thoughts

- The TDECQ measurements for a SiP transmitter with CWDM grid indicate :
- Small manufacturing margin (0.4 dB);
- Insufficient power budget to close the 10 km fiber transmission (0.36 dB gap)
- The TDECQ of EML transmitters at CWDM grid are excessively high at 10 km positive dispersion.
- Possible choices for 400GBASE-LR4:
- Adopting CWDM as a baseline for 6.3 dB loss with around $6-7 \mathrm{~km}$ reach.
- Adopting LWDM as a baseline for 10 km reach.

Appendix

$E R=10.5 \mathrm{~dB}$

Source:
http://www.ieee802.org/3/cu/public/cu_adhoc/cu_archive/mazzini_3cu_adh oc_070319.pdf

