IEEE P802.3cy D2.1 10G+ Auto Task Force 1st Working Group recirculation ballot comments

$C I 00$	$S C O$	P	L
Dawe, Piers	Nvidia		785

Dawe, Piers Nvidia
"groups of 130 65B blocks": elsewhere there are 64B/65B block and 65-bit block
SuggestedRemedy
Change "65B block" to "64B/65B block" or "65-bit block" as appropriate, throughout
Response Response Status C

ACCEPT IN PRINCIPLE.
Change "65B block" to "64B/65B block" throughout the text of the draft. Usage in figures to remain "65B block" consistent with IEEE Std 802.3-2022.

Cl 45	SC 45.2.1.245.1	P27	L20
Wienckowski, Natalie	General Motors		\# 791

Comment Type E Comment Status A

SuggestedRemedy
Delete red Editorial note.
Response Response Status C
ACCEPT.

CI 78 SC 78.5	P30	L10	\# 804	
Graba, Jim		Broadcom		
Comment Type T	Comment Status A		late	

Tphy_shrink_tx and Tw_sys_rx numbers are incorrect. Case-4 Tw_sys_tx and Tw_phy
Tphy_shrink_tx and Tw_sys_rx
latencies are in also incorrect.
SuggestedRemedy
Change the incorrect numbers as indicated on page 6 of graba_3cy_01_0920.pdf.
Response Response Status C
ACCEPT IN PRINCIPLE.
Change the incorrect numbers as highlighted on page 6 of graba_3cy_01a_0920.pdf.

Cl $\mathbf{1 0 5}$	SC 105.1.2	P33	L42
McClellan, Brett	Marvell		\# 792
Comment Type	E	Comment Status A	
Col			

$\begin{array}{lr}\text { McClellan, Brett } & \text { Marvell } \\ \text { Comment Type E Comment Status A EZ }\end{array}$
typo in editor's instruction
SuggestedRemedy
change 'Insert a new bullet e) in 10.5 . 2 as shown below.' to 'Insert a new bullet e) in 105.1.2 as shown below.'

Response Response Status C
ACCEPT.

$C l$	165	SC 165.1.3	P37

Dawe, Piers Nvidia
$E Z$
Comment Type E Comment Status A
14 062.5 MBd - as the number is more than 10,000 and the space in a number with a decimal part is hard to parse, ...
SuggestedRemedy
It would be better to put this as 14.0625 GBd throughout. 8 changes.
Response Response Status C
ACCEPT.

Cl $\mathbf{1 6 5}$ SC 165.1.3	P37	L35	\# 793
McClellan, Brett	Marvell		
Comment Type E	Comment Status A		EZ

Comment Type E Comment Status A
$E Z$
D2.0 comment 637 instruction was not followed: delete 'rates'
SuggestedRemedy
implement as instructed
Response Response Status C
ACCEPT IN PRINCIPLE.
Change "transmitted at a 14 062.5 MBd rate" to "transmitted at 14062.5 MBd "

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

Approved Responses
IEEE P802.3cy D2.1 10G+ Auto Task Force 1st Working Group recirculation ballot comments

IEEE P802.3cy D2.1 10G+ Auto Task Force 1st Working Group recirculation ballot comments

$C l 165$	$S C$	165.4.2.6	P81
Dawe, Piers	Nvidia	L10	\# 787

Comment Type E Comment Status A
"signaling rate of the SEND_S signal shall be 703.125 MHz " Is that signaling rate (MBd) or pattern repetition rate?

SuggestedRemedy
Change MHz to MBd?
Response Response Status C
ACCEPT IN PRINCIPLE.
The following changes are made:
Delete the text "The nominal signaling rate of the SEND_S signal shall be 703.125 MHz ."
Revise the existing statement by adding statement in <<>>:
"An implementation of MASTER and SLAVE PHY SEND_S PN sequence generators by linear-feedback shift registers is shown in Figure 165-20. The bits stored in the shift register delay line at time n are denoted by $\mathrm{Sn}[7: 0]$. <<The symbols of the shift registe register delay line at time n are denoted by $\mathrm{Sn}[7: 0] . \ll$ The symbols of the shift register
sequence Sn[] shall be generated at a rate of $703.125 \mathrm{MHz} . \gg$ At each symbol period, the sequence Sn[] shall be generated at a rate of 703.125 MHz .>> At each symbol period, the
shift register is advanced by one bit, and one new bit represented by $\mathrm{Sn}[0]$ is generated. shift register is advanced by one bit, and one new bit represented by $\operatorname{Sn}[0]$ is generated.
The PN sequence generator shift registers shall be reset to a value of $\operatorname{Sn}[7: 0]=00000001$ The PN sequence generator shift registers shall be reset to a value of $\operatorname{Sn}[7: 0]=0000$
upon entering into the TRANSMIT_DISABLE state (see Figure 165-20) or on the upon entering into the TRANSMIT_DISABLE state (see Figure 165-20) or on the receive a continuous PN sequence between separate periods of the SEND_S signal."

IEEE P802.3cy D2.1 10G+ Auto Task Force 1st Working Group recirculation ballot comments

$C l$			
165	$S C$	165.5.3	P93
Dawe, Piers	Nvidia	L17	\# 781

Comment Type T Comment Status R
For some of the measurements where a high speed signal is to be observed with a scope there should be a specified scope bandwidth. fb $\times 3 / 4$ is usual. This standardises the measurement and keeps some irrelevant instrument and DUT noise out of it.

SuggestedRemedy

This would be beneficial for 165.5.3.2 Transmitter linearity (SNDR), 165.5.3.3.1, 2 Transmit MDI jitter in MASTER mode and 165.5.3.5, and harmless for some others such as droop.
Response
Response Status C
REJECT.
No specific change proposed.

CI $165 \quad S C$			
165.5.3.3	P95	L5	\# 782
Dawe, Piers	Nvidia		

Comment Type T Comment Status A

Jitter measurement bandwidth "at least 200 MHz " same as it was in 149 for a slower divided clock, and open ended.
SuggestedRemedy
Should it be increased? Give a value or range rather than "at least"
Response Response Status C

ACCEPT IN PRINCIPLE.
Delete "at least" from the statement.
The number was left at 200 MHz intentionally and will not be modified.

Cl 165	SC 165.5.3.3	P95	L8
Dawe, Piers	Nvidia	\# 783	

Dawe, Piers
Nvidia
Comment Type T Comment Status R
Measuring jitter on 0.4 ms blocks with no clock recovery unit in the measurement gives an extremely low ($\sim \mathrm{kHz}$) implied high-pass jitter measurement corner. 165.5.3.3.2 has $\mathrm{fn}=$ 2.5 MHz which is much higher.

SuggestedRemedy

Should there be a "soft" CRU function not just linear regression in the TIE analysis?
Response Response Status C
REJECT.
The current system design is as intended. No changes to the draft needed.

Cl 165	SC 165.5.3.4	P96	L1
Zimmerman, George	CME Consulting/APL Gp, Cisco, CommScope, Marve		

Comment Type T Comment Status R

LFL
I realize this is out of scope, and the comment is made to put the issue on the table - for resolution at initial SA ballot. The lower frequency ranges for the PHY, Link Segment specifications, and MDI are all over the place. Starting at 0 Hz is not going to be practical for measurements of a PSD going to up to 13.75 GHz . Likewise, the ANEXT and AFEXT loss are constrained starting at 1 MHz - also too low for practicality. Additionally, the TX PSD lower bound frequency is 5 MHz - below the link segment low frequency limit of the insertion loss. For all of these, going this low won't be necessary for link segments starting at 10 MHz . Suggest they be aligned at 10 MHz .

Unlike my subsequent comments on return loss, I think this comment is likely ready to make the change.
SuggestedRemedy
Change low frequency limit for Upper TX PSD mask (eq 165-6, Pg 96 line 1), Lower TX PSD mask (eq 165-7, Pg 96 line 7), PSANEXT (eq 165-35, Pg 108 line 24), and PSAFEXT (eq 165-36, Pg 109 line 18) to 10 MHz .

Response
Response Status C
REJECT.
This comment is out of scope for this recirculation. The issue was recorded in the action item list for D3.0 study.

Cl 165	SC 165.7.1.3.1	P102	L51
Zimmerman, George	CME Consulting/APL Gp, Cisco, CommScope, Marve		

APL Gp, Cisco, CommScope, Marve
Comment Type T Comment Status R LFL
(also out of scope)
Link segment return loss specifications start at 30 MHz , whereas the link segment return loss is constrained (at least) by the Insertion loss between 10 MHz and 30 MHz (at least 6.8 dB RL at 10 MHz to meet the IL at 10 MHz)

While I've proposed a remedy, I think this needs further thought and I would be OK rejecting this comment and working on it with the TF for initial SA ballot.

SuggestedRemedy

Consider changing the low frequency limit for link segment return loss Eq 165-17 at pg 102 line 51 from 30 MHz to 10 Mhz and adding a frequency range from 10 Mhz to 30 MHz to Equation 165-17 with value of $20-6.5^{*}(30-\mathrm{f}) / 10 \mathrm{~dB} \quad 10<=\mathrm{f}<30 \mathrm{MHz}$.
Response
Response Status C

REJECT.

This comment is out of scope for this recirculation. The issue was recorded in the action item list for D3.0 study.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

IEEE P802.3cy D2.1 10G+ Auto Task Force 1st Working Group recirculation ballot comments

Cl 165	SC 165.7.1.3.4	P106	L13
Sedarat, Hossein	Ethernovia		\# 796

Comment Type T Comment Status A
The last sentence was eliminated from step 8 which makes the last step of ETM
calcualationn procedure incomplete and ambiguous.
SuggestedRemedy
Change the sentency in step 8 to: "Apply steps 3, 4, and 5 to partial response g_n^m (instead of $h _n$) to calculate the associated REM. The ETM(m) is this REM calculated for g_n^m and evaluated at Ndiscard_etm."
Response
Response Status C

ACCEPT.

CI 165	SC 165.7.1.6	P107	L47
Sedarat, Hossein	Ethernovia		\# 797

Comment Type T Comment Status A
The maximum propagation delay of 69 ns is excessively large and may unnecessarily add complexity to the echo canceller. A value of 55 ns provides roughly 10% margin with respect to available measurements of current (802.3ch-grade) and future (802.3cy-grade) cables. More discussion on the topic can be found on email reflector:
https://www.ieee802.org/3/B10GAUTO/email/msg00389.html

SuggestedRemedy

replace 69 ns with 55 ns .
Response Response Status
ACCEPT IN PRINCIPLE.
replace 69 ns with $60 \mathrm{~ns}+$ update PICS.
Add a new sentence at the end of the paragraph: "The delay specification represents an acceptable margin over the delay of 11 m of automotive cabling expected to be used."
Cl 165 SC 165.8.2.1 P110 L21 \# 801

Zimmerman, George CME Consulting/APL Gp, Cisco, CommScope, Marve Comment Type T Comment Status R LFL
Why is the link segement return loss only to 30 MHz when the MDI return loss is constrained starting at 5 MHz ? These require study and should be considered for changes at initial SA ballot. Whatever considerations are important for one RL are equally applicable to the other. It probably is not relevant to constrain the MDI RL down to 0 dB RL (which is is at 5 MHz). At 10 Mhz , the lower end of the IL spec, the MDI RL is 6 dB as written.

While I've proposed a remedy, I think this needs further thought and I would be OK rejecting this comment and working on it with the TF for initial SA ballot.

SuggestedRemedy

Change MDI return loss lower limit to 10 MHz . (eq 165-37), pg 110, line 21, maintaining the existing equation, except for the frequency limit change.
Response
Response Status C

REJECT.

This comment is out of scope for this recirculation. The issue was recorded in the action item list for D3.0 study.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn SORT ORDER: Clause, Subclause, page, line

