A Limit for Cumulative Power of Micro-Reflections

Hossein Sedarat

March 2021

Overview

- A set of time-domain limits on return loss can help reduce the complexity of the PHY significantly (<u>sedarat_0920</u>, <u>sedarat_1020</u>, <u>jonsson_1020</u>, <u>sedarat_1120</u>, <u>jonsson_1220</u>, <u>jonsson_0321</u>)
- An upper bound on the power of micro-reflections is a key factor in these limits
- When this upper bound is not sufficiently small (partial) cancellation of micro-reflection is needed
- A limit-line on cumulative power of micro-reflections offers a path to more efficient design

Reflections in Time Domain

• Major reflections

- Limited to a few time segments with short span
 - MDI connections
 - Inline connectors
 - Points of compression or sharp bent in the cable
- Contain most of the echo power
- Micro reflections
 - Spread out throughout the entire span of the echo response
 - Typically, much lower power than major reflections but can be a significant limiting factor for SNR

Uncancelled Micro-Reflections

- A significant computation power may be dedicated to cancelling echo from micro-reflections
- Echo canceller may be significantly simplified if microreflections are sufficiently weak and remain partially or completely uncancelled
- The uncancelled echo is additional source of noise reducing the operating SNR margin

Power Limits on Micro-Reflections

 <u>sedarat_1020</u>: -55 dB with no need for cancellation and resulting in negligible loss of SNR margin

 jonsson_1020: -40 dB with 5 dB partial cancellation and resulting in 1.6 dB loss < in SNR margin

Design Tradeoff		
Impulse Error Rate:	1.00E-04	1.00E-04
AFE-noise [dBm/Hz]:	-140	-140
EC cancelation [dB]	5	5
EC Connector cancelation [%]:	100%	100%
Implementation Loss [dB]:	0	0
Simulation Parameters		
Cable Model:	mueller*sdp	
Connector Echo Model:	hard	
Temperature [°C]:	20	
Max Simulation Frequency:	9.00E+09	
Calculated Values		
	Upstream	Downstream
Theoretical Slicer SNR [dB]:	23.22	23.22
Estimated Slicer SNR [dB]:	23.22	23.22
Required Slicer SNR [dB]:	17 78	17.78
SNR Margin [dB]	5.44	5.44
Nyquist Frequency [GHz]:	7.03	7.03
Insertion Loss @ Nyquist [dB]:	26.64	26.64
Design Tradeoff		
Impulse Error Rat	e: 1.00E-04	1.00E-04
		440

		1.002.01
AFE-noise [dBm/Hz]:	-140	-140
EC cancelation [dL	100	100
EC Connector cancelation [%]:	100%	100%
Implementation Loss [dB]:	0	0
Simulation Parameters		
Cable Model:	mueller*sdp	
Connector Echo Model:	hard	
Temperature [°C]:	20	
Max Simulation Frequency:	9.00E+09	
Calculated Values		
Calculated Values	Upstream	Downstream
Calculated Values Theoretical Silver SNR [dB]:	Upstream 24.83	Downstream 24.83
Calculated Values Theoretical Silver SNR [dB]: Estimated Silcer SNR [dB]:	Upstream 24.83 24.83	Downstream 24.83 24.83
Calculated Values Theoretical Sliver SNR [dB]: Estimated Slicer SNR [dB]: Required Slicer SNN [dB]:	Upstream 24.83 24.83 17.78	Downstream 24.83 24.83 17.78
Calculated Values Theoretical Sliver SNR [dB]: Estimated Slicer SNR [dB]: Required Slicer SNN [dB]: SNR Margin [dig	Upstream 24.83 24.83 17.78 7.05	Downstream 24.83 24.83 17.78 7.05
Calculated Values Theoretical Sliver SNR [dB]: Estimated Slicer SNR [dB]: Required Slicer SNN [dB]: SNR Margin [dig: Nyquist Frequency [GHz]:	Upstream 24.83 24.83 17 78 7.05 7.03	Downstream 24.83 24.83 17.78 7.05 7.03
Calculated Values Theoretical Sliver SNR [dB]: Estimated Slicer SNR [dB]: Required Slicer SNN [dB]: SNR Margin [dig: Nyquist Frequency [GHz]: Insertion Loss @ Nyquist [dB]:	Upstream 24.83 24.83 17 78 7.05 7.03 26.64	Downstream 24.83 24.83 17.78 7.05 7.03 26.64

Micro-Reflection Cancellation

- Micro-reflections should be (partially) cancelled if their total power is not small enough
- The echo canceller is implemented more efficiently if the profile of the reflections in time is known in advance
- A limit on total power does not provide a limit on the time profile of micro-reflections
 - The 2 cases in this plot shows similar total power but very different time profile
 - An echo canceller designed efficiently for typical case may not work well for pathological case

Micro-Reflection Limit: Magnitude

- A limit on the magnitude of the reflections can be used for an efficient design of the echo canceller
 - Near-end reflections need high resolution coefficients
 - Mid-range reflection need low resolution coefficients
 - Far-end reflections may remain uncancelled
- The magnitude of the micro-reflections have large variance resulting in a loose limit

Micro-Reflection Limit: Cumulative Power

• Cumulative power: sum of instantaneous reflection power from the tail-end of the echo response

$$P_c(t) = \int_t^\infty h^2(\tau) \cdot d\tau$$

 $h(\tau) =$ micro-reflection at time τ

• $P_c(0) = \text{total power of micro-reflections}$

Micro-Reflection: Cumulative Power Limit

- Cumulative power is a smooth curve with much lower variance
 - ➔ A tight limit may be defined
- Cumulative power correlates with manufacturing parameters
 - A bigger variations of characteristic impedance shifts the curve up vertically
 - Insertion loss and the propagation delay of the cable determines the slope
- Cumulative power limit helps the PHY designer with proper allocation of computational resources for cancellation of micro-reflections

Cumulative Power and SNR Loss

- The uncancelled micro-reflections contributes to overall noise and reduces the noise budget on other sources
- Cumulative power can readily show the impact on noise budget for uncancelled tail-end reflections
- A limit on the cumulative power makes this impact predictable

Limit on Cumulative Power

In its simplest form, defined as a linear function:

$$P_c(t) < P_0 - \alpha t$$

where,

- $P_0 = \text{total micro-reflection power}$
- α = rate of power loss, a function of
 - insertion loss per unit length (dB/m)
 - propagation speed (m/s)
- This limit line may also be clipped to minimum and maximum values
- These parameters may be defined as a function of the insertion loss of the cable

Summary and Conclusion

- A limit on the total power of micro-reflections is a good first limit on echo channel
- If the limit is not small enough then (partial) cancellation of micro-reflection may be needed to achieve the target SNR
- The total power does not provide any information on how the micro-reflections are distributed in time
- A limit on the cumulative power provides the additional information needed for efficient implementation of the echo canceller

ΤΗΔΝΚ ΥΟυ

ETHERNOVIA

hossein.sedarat@ethernovia.com

