Choice of Modulation

Hossein Sedarat

IEEE 802.3cy August 2021

Overview

- Task force recently adopted the limit lines for insertion loss and return loss
- This presentation revisits modulation options given these newly adopted limit lines
- The analysis presented here follows closely that of a previous contribution (<u>sedarat_3cy_1120</u>)

Baud Rate, Bandwidth and SNR

- Assuming FEC redundancy and other overheads to be the same as 802.3ch
- Target error rate: 10⁻¹²
- Assuming FEC coding gain covers implementation loss and design margin

Modulation	PAM3	PAM4	PAM5	PAM6	PAM7	PAM8
Baud Rate (GHz)	17.7	14.1	12.1	10.9	10.0	9.4
Nyquist (GHz)	8.9	7.0	6.1	5.4	5.0	4.7
Required Slicer SNR (dB)	21.3	24.0	26.1	27.7	29.1	30.3

PSD: Received Signal and Echo

- Transmit PSD: zero order hold
- Transmit power: 0 dBm
- Insertion and return loss at limit line
- PCB/MDI loss as in <u>diminico_0521</u>

Constellation	PAM3	PAM4	PAM5	PAM6	PAM7	PAM8
Signal Power (dBm)	-12.9	-12.0	-11.4	-10.9	-10.6	-10.4
Signal-to-Echo Ratio (dB)	-0.2	1.4	2.5	3.4	4.0	4.4

Tolerated Noise

Constellation	PAM3	PAM4	PAM5	PAM6	PAM7	PAM8
Required Slicer SNR (dB)	21.3	24.0	26.1	27.7	29.1	30.3
Required Input SNR (dB)	30.7	31.5	32.4	33.5	34.4	35.3
Equalization Loss (dB)	9.4	7.5	6.3	5.8	5.3	5.0

- Equalization loss is lower for denser constellations
- Received signal power is higher for denser constellation
 - Maximum tolerated noise power and noise floor have limited variations across different constellations
 - ➔ Both PAM4 and PAM5 are close to the sweet spot

PAM4 vs PAM5

• PAM4 advantages:

- Lower SNR requirements reduces the complexity and power consumption
- More tolerant of constant power noise sources
- More immunity to RF interference

• PAM5 advantages:

- More tolerant to stronger white noise sources
- Lower baud rate:
 - PHY complexity and power consumption is generally reduced with lower baud rate
 - The power and time span of echo response is reduced with baud rate
 - Equalization is easier with lower insertion loss in a narrower bandwidth
 - RF interference is generally weaker at lower frequencies
 - Emission is easier to control at lower frequencies
 - Less sensitivity to timing error and jitter at lower bandwidth
 - Shielding, isolation and balance is easier to control in lower frequencies

Summary and Conclusions

- PAM4 and PAM5 are both reasonable choices offering similar levels of noise tolerance
 - PAM4 tolerates lower SNR and higher noise power (by less than a dB)
 - PAM5 tolerates stronger noise floor (by less than a dB)
- PAM5 operates at lower baud rate and bandwidth (6 GHz vs 7 GHz), offering advantages in many aspects
 - This makes PAM5 a strong candidate to consider

ΤΗΔΝΚ ΥΟυ

ETHERNOVIA

hossein.sedarat@ethernovia.com

