A Limit on Micro Reflections

Hossein Sedarat

October 2020

Overview

- Echo canceller is one of the most complex blocks in high-speed, full-duplex PHYs
- A proper limit of return loss in time domain can simplify the complexity of this block significantly (<u>sedarat_3cy_01_0920</u>)
- The simplification comes in part by limiting the power of micro reflections to eliminate the need for their cancellation
- A limit for micro-reflections is explored in this presentation

Simplified Echo Canceller

- Echo pulse response consists of
 - Major reflections at discontinuities (2 MDI and 2 connectors)
 - Micro-reflections due to cable inhomogeneity
- Echo canceller replicates the echo response for both major and micro reflections
- Significant reduction in complexity of echo canceller is possible if microreflections are negligible
- Need a clear limit on micro-reflections

Limit on Residual Echo

- Uncancelled micro-reflections are to be considered as part of all other sources of noise
- Additional noise source increases the complexity of the PHY
 - Analog front-end
 - Digital equalizers
- Limit the overall PHY complexity by limiting the uncancelled echo power -0.02 significantly below the overall noise power budget

ns

100

150

50

50

ns

0

100

150

0

Tolerated Noise Budget

Following the analysis presented in sedarat 3cy 01 10 14 20

- PAM4
- Baud rate = 14.1 GHz
- Slicer SNR = 24 dB

- Insertion loss according to 802.3ch
- IL scales linearly with length
- Transmit power $\approx 0 \text{ dBm}$

Bit Rate (Gbps)	Cable Length (m)	IL @ Nyquist (dB)	SNR Input (dB)	Receive power (dBm)	Tolerated Noise (dBm)
25	11	37.2	33.9	-13.9	-47.8
	9	30.4	31.2	-12.2	-43.4
	7	23.7	28.9	-10.3	-39.2

Limit on Micro-Reflections

- The power of uncancelled micro-reflections should remain significantly lower than the overall tolerated budget
- Considering 15 dB margin

Bit Rate (Gbps)	Cable Length (m)	IL @ Nyquist (dB)	Tolerated Noise (dBm)	Residual Echo (dBm)	Micro-reflection power gain (dB)*
25	11	37.2	-47.8	-62.8	-62.8
	9	30.4	-43.4	-58.4	-58.4
	7	23.7	-39.2	-54.2	-54.2

* power gain = sum of squares of micro-reflections properly low-pass filtered and sampled at baud rate

Power Gain of Micro-Reflections

PHY cable $R = \int_{0}^{L} r(l) \cdot g(l) \cdot dl$

• R: Total power gain of micro-reflections

A simplified analysis:

- r(l): Micro-reflection power gain density or power gain per unit length
- g(l): Round trip gain of the cable for a reflection point at distance l
- *L*: Length of the cable

Relevant Cable Parameters

• Assuming uniform gain of micro-reflection throughout the cable

$$R = r \cdot \int_0^L g(l) \cdot dl = r \cdot L_0$$

- r: power gain density of the micro-reflections is a cable manufacturing parameter independent of the length and loss
- *L*₀: effective length of an equivalent lossless cable
 - A function of cable length and loss
 - $L_0 \leq L$
- Given a max on L_0 , the limit on R can be translated to a limit on r

Conclusion

- A limit on the micro-reflections may be defined as the total power gain of the uncancelled residual echo
- The insertion loss of the channel has a direct impact on this limit for micro-reflections
 - Comparing to an 802.3ch 11 m cable, a 7 m cable relaxes this limit by more than 8 dB
- This power limit for micro-reflections depends on the allocated noise budget for uncancelled echo and is in the order of -55 dB
- This limit can be translated to limits on relevant manufacturing parameters (loss and reflection density)

ΤΗΔΝΚ ΥΟυ

ETHERNOVIA

hossein.sedarat@ethernovia.com

