Clause 169 Power System Parameter Adjustment

Michael Paul - ADI
Len Stencil - TDK
Felipe Jerez - TDK

Introduction

This presentation has 2 goals

1. Define a rule set to help judge trade-offs when adjusting the delivered power in Clause 169

Start with a simple rule set for system builders
Define interactions and limits on choices such as output power, node count, channel resistance
Define limits of voltage regions in the state machine so the system can be implemented with lowest possible complexity
2. Recompute delivered power for Type 0 and Type 1 systems

Market is asking for $24 \mathrm{~V}+/-10 \%$ Type 0 supply (currently 26V - 30V)
Change channel resistance to achieve objectives with new supply
Reallocate power on Type 1 system based on new channel resistance

Network

 Construction Rules
Network Construction Rules

How are unit load rules applied to network construction?

1. Power load on a mixing segment may not exceed 16 Units
2. Each unpowered node counts as 1 U until the limit of 16 U has been reached on the mixing segment.
3. After 16 units of load** been reached, no more powered nodes may be added. Unpowered nodes may be added, but the mixing segment length must be reduced by 1.5 meters per non-powered node*.

- *Based on tconn max of 0.1几 @ 20C and 20AWG cable. See tables for derating with other AWG

- **Power is limited to 16U by power coupling inductance allocation

Max Power per Node Algorithm

I. Given a mixing segment resistance
I. e.g. 50 meter 20 gauge at 65 C
II. Given a T-connector resistance
I. e.g. $100 \mathrm{~m} \Omega$ between TC1 and TC2
III. Given a number of powered nodes
I. e.g. 16
II. Caped by mixing segment power coupling inductance allocation / droop spec
IV. Given a minimum MPD input voltage
I. Type $=32 \mathrm{~V}$, Type $=16 \mathrm{~V}$
II. Maintain voltage gap between operating regions: Type1/ TypeO, Type0 / Discovery_Low
V. Pick a worst case network configuration
I. Distance between nodes
I. e.g. $20 \mathrm{~cm}\left(\sim 8^{\prime \prime}\right)$
VI. Place nodes at the end of the mixing segment with specified separation
I. Last node is placed at 50 meter mark
VII. Maximize node power while keeping last node voltage above minimum MPD input voltage
VIII. PPSE should not be above 90W
VIII. Allow inaccuracy in PPSE measurements between 90 W and 100 W
IX. Mixing segment rules should be the same for Type 0 and Type 1 to avoid market confusion

Recalculate System Power Delivery

Industrial Use Case : Vmpse,min $=21.6 \mathrm{~V}$ w/ different gauge

Equivalent distance to 50m, 20g @ 65C

Resistance of 50m cable @ temperature

temp	: 65.00	40.00	25.00
18awg	2.47	2.26	2.13
20awg	3.93	3.60	3.40
22awg	6.96	6.37	6.02
23awg	: 8.78	8.04	7.59
24awg	11.07	10.13	9.57

Type 0 Power Delivery

- Based around $24 \mathrm{~V}(+/-10 \%)$ supply
- Vmpse_max $=26.4 \mathrm{~V}$
- Vmpse_min = 21.6V
- Choose 20AWG Cable (50m @ 65C)~4
- Clump 16 nodes at the end of the mixing segment
- Last node must stay above 16V
- Deliver at least 1W per MPD

Option	Vpse	Ppse	Pmpd	Ploss	Ipse	Rchan	Vlast rconn sep pnode			
1	21.600	-20.456	16.000	-4.456	-0.947	7.129	16.354	0.2	0.20	1
2	21.600	-19.786	16.000	-3.786	-0.916	5.529	17.222	0.1	0.01	1
3	21.600	-20.698	16.000	-4.698	-0.958	7.129	16.188	0.2	0.01	1

- All options work well
- We can deliver 16 MPDs 1 W each @ 50 meters

Type 0 Unit loads - Maximize Power

Nodes \times Load	Vpse	Ppse	Pmpd	Ploss	Ipse	Rchan	Vlast	Ilast nodes pnode		
$16 \times 1 u$	21.600	-25.089	19.200	-5.889	-1.162	5.529	16.174	0.074	16	1.2
$8 \times 2 u$	21.600	-24.627	19.200	-5.427	-1.140	4.729	16.667	0.144	8	2.4
$4 \times 4 u$	21.600	-24.420	19.200	-5.220	-1.131	4.329	16.901	0.284	4	4.8
$2 \times 8 u$	21.600	-24.329	19.200	-5.129	-1.126	4.129	17.014	0.564	2	9.6
$1 \times 16 u$	21.600	-24.265	19.200	-5.065	-1.123	4.014	17.091	1.123	1	19.2

Optimizing Type 1 Power Delivery

Option	Vpse	Ppse	Pmpd	Ploss	Ipse	Rchan	Vlast	rconn sep	pnode
1	45.000	-79.491	64.000	-15.491	-1.766	7.129	35.221	0.20 .20	4
2	45.000	-77.317	64.000	-13.317	-1.718	5.529	36.790	0.10 .01	4
3	45.000	-93.422	72.000	-21.422	-2.076	7.129	33.496	0.20 .20	4.5
4	45.000	-89.104	72.000	-17.104	-1.980	5.529	35.754	0.10 .20	4.5
	45.000	-94.639	72.000	-22.639	-2.103	7.129	33.118	0.20 .01	4.5
6	45.000	-90.082	72.000	-18.082	-2.002	5.529	35.432	0.10 .01	4.5

囚 Options 1 and 2 are only delivering 64 W total
囚 Options 3 and 5 deliver 72 W , nominal PSE output is $>90 \mathrm{~W}$
\checkmark Options 4 and 6 deliver 72W with PSE output <= 90W
Requires $<=100 \mathrm{~m} \Omega$ connector resistance per node

Type 1 Unit loads - Maximize Power

Nodes	X	Load	Vpse	Ppse	Pmpd	Ploss	Ipse	Rchan	Vlast	Ilast nodes pnode		
16	X	1u	45.000	-89.104	72.000	-17.104	-1.980	5.529	35.754	0.126	16	4.5
8	X	2u	45.000	-87.944	72.000	-15.944	-1.954	4.729	36.545	0.246	8	9.0
4	X	4 u	45.000	-87.409	72.000	-15.409	-1.942	4.329	36.927	0.487	4	18
2	X	8 u	45.000	-87.170	72.000	-15.170	-1.937	4.129	37.113	0.970	2	36
1	X	16u	45.000	-87.003	72.000	-15.003	-1.933	4.014	37.240	1.933	1	72

Maximized Power - Effect on Power Coupling Magnetics

Type 0 (24V)

Previously suggested magnetic sizes

Unit Size	Power (W)	IMPD (mA)	Size	
1	1	63	$3.2 \times 2.5 \times 2.5$	
2	2	125	$3.2 \times 2.5 \times 2.5$	
4	4	250	$3.2 \times 2.5 \times 2.5$	\square
8	8	500	$4.5 \times 3.2 \times 2.5$	
16	16	1000	$7 \times 6 \times 3.5$	
MPSE	23	1000	$12 \times 12 \times 10.5$	

New magnetic size estimates

Unit Size	Power (W)	IMPD (mA)	Size
1	1.2	74	$3.2 \times 2.5 \times 2.5$
2	2.4	144	$3.2 \times 2.5 \times 2.5$
4	4.8	284	$3.2 \times 2.5 \times 2.5$
8	9.6	564	$4.5 \times 3.2 \times 2.5$
16	19.2	1123	$7 \times 6 \times 3.5$
MPSE	25.9	1200	$12 \times 12 \times 10.5$

Maximized Power - Effect on Power Coupling Magnetics
 Type 1 (48V)

Previously suggested magnetic sizes

Unit Size	Power (W)	IMPD (mA)	Size	
1	2	59	$3.2 \times 2.5 \times 2.5$	
2	4	118	$3.2 \times 2.5 \times 2.5$	
4	8	235	$3.2 \times 2.5 \times 2.5$	\square
8	16	471	$3.2 \times 2.5 \times 2.5$	
16	32	941	$7 \times 6 \times 3.5$	
MPSE	45	1000	$12 \times 12 \times 10.5$	

New magnetic size estimates

Unit Size	Power (W)	IMPD (mA)	Size
1	4.5	126	$3.2 \times 2.5 \times 2.5$
2	9.0	246	$3.2 \times 2.5 \times 2.5$
4	18	487	$4.5 \times 3.2 \times 2.5$
8	36	970	$7 \times 7 \times 7$
16	72	1933	$7 \times 7 \times 7$
MPSE	90	2000	$15 \times 15 \times 15$

Large Changes in Type 1 Magnetic Sizes

 ANALOGDEVICES

Potential System Type Power Modification

Adjust these headline numbers, ripple changes through Clause 169
This summarizes full extent of possible changes
Need to consider power coupling magnetics and maximum T-connector resistance before adoption
Table 169-1-System power types

	30V Max MPSE	50 V Max MPSE	Units
System type	0	1	
$\mathrm{V}_{\text {MPSE(max) }}$	$30-26.4$	50	V
$\mathrm{V}_{\text {MPSE(min) }}$	26-21.6	45	V
$\mathrm{V}_{\mathrm{MPD}(\mathrm{min})}$	16	34	V
$\mathrm{I}_{\text {MPSE(min) }}$	10001200	10002000	mA
$\mathrm{P}_{\text {MPSE(min) }}$	26-25.9	-45-90	W
$\mathrm{P}_{\text {MPD_1U(max) }}$	1-1.2	24.5	W

Proposed System Type Power Modification Comment 107

Adjust these headline numbers, ripple changes through Clause 169
This summarizes changes that can me made right now, along with text that changes the channel resistance
Table 169-1—System power types

	24V Nom. 30V Max MPSE	48V Nom. M0V Max MPSE	Units
System type	0	1	
$\mathrm{~V}_{\text {MPSE(max) }}$	$-30-26.4$	50	V
$\mathrm{~V}_{\text {MPSE }(\min)}$	$-26-21.6$	45	V
$\mathrm{~V}_{\text {MPD }(\min)}$	16	34	V
$\mathrm{I}_{\text {MPSE(min) }}$	1000	1000	mA
$\mathrm{P}_{\text {MPSE }(\min)}$	$26-21.6$	45	W
$\mathrm{P}_{\text {MPD_1U(max) }}$	1	2	W

Changes to 169.2 - Comment 106

Old Text:

169.2 Mixing segment

The dc loop resistance of the mixing segment shall be 12Ω or less, measured from edge termination to edge termination

New Proposal:

169.2 Mixing segment

The mixing segment consists of cable, nodes(TCls), and terminations (see Figure 169-1).

1000 terminations are connected at the ends of the mixing segment and must be AC coupled. The maximum dc loop resistance of the mixing segment cable, not including nodes, shall be 4Ω.
The mixing segment supports up to 17 in-line nodes, consisting of 1 MPSE and up to 16 MPDs or DTEs.

Each node may add a maximum of $200 \mathrm{~m} \Omega$ to the mixing segment loop resistance.

