Protecting against the error floor P802.3db Draft 3.1 comment R1-11

Piers Dawe, Nvidia June 2022

Introduction

- As rates increase, eyes get more closed
 - Even after the equalizer
- We use FEC to run at a higher BER yet still deliver a good link
- We expect to deliver much better than the specworst performance
- We expect that an affordable improvement in receiver sensitivity will allow a marginal transmitter to make a good link
- Error floors are observed, particularly with PAM4

As rates increase, eyes get more closed

Lane rate	10G		25G			50G		100G	
BER	1e-12		1e-12	5e-5		2.4e-4			
Qmin	7.03		7.03	3.89		3.41 (×3 = 10.2)			
	TDP	TDP	TDP	TDEC	TDP	TDECQ	К	TECQ,	К
DR						3.2+4.8	3.2+4.8	3.4+4.8	3.4+4.8
LR	3.2	2.6	2.2		2.7	3.2+4.8	3.2+4.8	3.4+4.8	_
SR	3.9	3.5		4.3		4.5+4.8	4.5+4.8	4.4*+4.8	_

* In the compliance test: up to 4.5 dB in service

At 10G, a receiver could add noise of $(10^{-0.39})/(2^{7}.03)$ RMS or 2.90% of OMA Now for SMF it's $(10^{-0.32})/(2^{3}3.41)$ to $(10^{-0.32})/(2^{3}3.41)$ or 2.34% to 2.23% of OMA, even after the reference equaliser has done its best to open the eye Now it's $(10^{-0.44})/(2^{3}3.41)$ to $(10^{-0.45})/(2^{3}3.41)$ or 1.77% to 1.73% of OMA As we push an increasing burden on the receiver, we need to be careful

- Two transmitters with the same 3.2 dB TDECQ (the limit finally adopted for the first PAM4 optical PMDs)
 - Blue one has high-probability (narrow distribution) impairments, purple one has Gaussian impairments
- A receiver deals with this with better sensitivity
- The theoretical worst error floor (asymptote) for 3.2 dB of unfortunate K is 3.8e-5

802.3db June 2022

-3 -2 -1 0 1 2 3 4 5

Receiver margin to stressed sensitivity (dBo)

- With 4.4 dB of TDECQ receiver needs more than twice the better sensitivity to get to a reasonable BER
 - To be more precise, it's an unfortunate transmitter with 4.4 dB of K
 - TDECQ = K + Ceq, all in dBo
 - The theoretical worst error floor (asymptote) for 4.4 dB of unfortunate K is 9.3e-5
- As what we care about is to the right of the nominal spec, put another spec there

- We can't spec far to the right because of instrument noise
- Proposing a limit of 1 dBo less added noise R in TDECQ than the spec (not the transmitter under test's R), for a predicted BER of 1.5e-4
- Like a (*OMA*_{outer} T(D)ECQ) limit at a better BER
- The implied ~TDECQ at 1.5e-4 for a Tx with min. OMA, max TDECQ at 2.4e-4, with worst error floor, is 5.16 dB. Raising the OMA by 0.76 dB buys this out. Other passing combinations are possible

802.3db June 2022

Protecting against the error floor

Further information

- In terms of error floor, this makes MMF transmitters (high TDECQ limit) perform similarly to SMF ones (not so high TDECQ and K limits)
- To make this spec a free by-product of TECQ and TDECQ, don't search for different tap weights at the lower noise value R, just use the ones already found for regular TECQ and TDECQ
- The target noise R in the draft is: min(OMA_{outer} T(D)ECQ) divided by Q_t, divided by 6 for PAM4
- min($OMA_{outer} T(D)ECQ$) = -4.4 dBm or 363 μ W
- $1/(6*3.414) = 17.7 \,\mu\text{W} \text{ or } -17.5 \,\text{dBm} \,\text{RMS}$
- This extra spec: 14.1 μ W or -18.5 dBm RMS
- Transmitters can easily pass this by various combinations of avoiding the worst kind of penalty and/or keeping off the minimum OMA

802.3db June 2022

Protecting against the error floor

Conclusion

- As penalties are far from all the same,
- and error floors are a concern with PAM4 and exacerbated by the high TDECQ limit for MMF,
- and better-than-nominal performance is commercially necessary,
- Add a quick side calculation to T(D)ECQ that looks more directly at a transmitter's ability to deliver a somewhat better-than-nominal BER
- No additional measurement required