Return Loss

(in support of comment 36)

Ramana Murty

Broadcom Inc.

IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force TF Plenary Meeting, Nov 11, 2021

1

Return Loss and Receiver Reflectance

- Past multi-mode link standards (802.3cm, .3cd, .3bm, .3ba) have specified Optical return loss tolerance (max) 12 dB Receiver reflectance (max) -12 dB
- 802.3db D2.0 specifies the same values for optical return loss tolerance and receiver reflectance
- Model for return loss shows that for a reasonable value of connector loss (0.4 dB), the maximum receiver reflectance can be specified as -12 dB

Symbols and Simplifications

Optical return loss tolerance	Τ ₀
Receiver reflectance	R _D
Connector reflectance (into waveguide)	R
Connector transmittance (into waveguide)	Т
Number of connectors	Ν

Simplifications:

- 1. Incoherent addition of reflected intensity
- 2. No fiber attenuation
- 3. Multiple reflections from a connector are ignored

Return Loss

There is some loss at the connector, i.e., R + T < 1.

For a given optical return loss tolerance T_0 and connector reflectance R, the maximum receiver reflectance R_D is shown as a function of T for N = 0, 1, 2, and 3 connectors.

At a particular connector transmittance T^* , $|R_D| = T_0$, independent of the number of connectors.

$$T^* = \sqrt{1 - \frac{R}{T_0}}$$

For $T_0 = |R_D| = 12 \text{ dB}$, $T^* \approx 0.92 \approx -0.37 \text{ dB}$

There is nothing special about -0.37 dB connector transmittance but it's a reasonable value.

D2.0 Specifications

Receiver reflectance (max)	-12 dB
Optical return loss tolerance (max)	12 dB

