The IEEE P802.3df Project – An Overview

IEEE P802.3df Task Force IEEE 802.3 Jan 2022 Interim Session

John D'Ambrosia Acting Chair, IEEE P802.3df Task Force Futurewei, U.S. Subsidiary of Huawei

Mark Nowell Acting Vice Chair, IEEE P802.3df Task Force Cisco

IEEE P802.3 df Objectives

Non-Rate Specific

- Support full-duplex operation only
- Preserve the Ethernet frame format utilizing the Ethernet MAC
- Preserve minimum and maximum FrameSize of current IEEE 802.3 standard
- Support a BER of better than or equal to 10 -13 at the MAC/PLS service interface (or the frame loss ratio equivalent)
- Provide support to enable mapping over OTN

• 200 Gb/s Related

- Support a MAC data rate of 200 Gb/s
- Support optional single-lane 200 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 200 Gb/s operation:
 - over 1 pair of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 1 pair of SMF with lengths up to at least 500 m
 - over 1 pair of SMF with lengths up to at least 2 km

400 Gb/s Related

- Support a MAC data rate of 400 Gb/s
- Support optional two-lane 400 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 400 Gb/s operation:
 - over 2 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 2 pairs of SMF with lengths up to at least 500 m

IEEE P802.3 df Objectives

• 800 Gb/s Related

- Support a MAC data rate of 800 Gb/s
- Support optional eight-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Support optional four-lane 800 Gb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 800 Gb/s operation:
 - over 4 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over eight lanes of twin axial copper cables with a reach up to at least 2 meters
 - over eight lanes over electrical backplanes supporting an insertion loss \leq 28dB at 26.56GHz
 - over 8 pairs of MMF with lengths up to at least 50 m
 - over 8 pairs of MMF with lengths up to at least 100 m
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km
 - over 4 pairs of SMF with lengths up to at least 500 m
 - over 4 pairs of SMF with lengths up to at least 2 km
 - over 4 wavelengths over a single SMF in each direction with lengths up to at least 2 km
 - over a single SMF in each direction with lengths up to at least 10 km
 - over a single SMF in each direction with lengths up to at least 40 km

IEEE P802.3 df Objectives

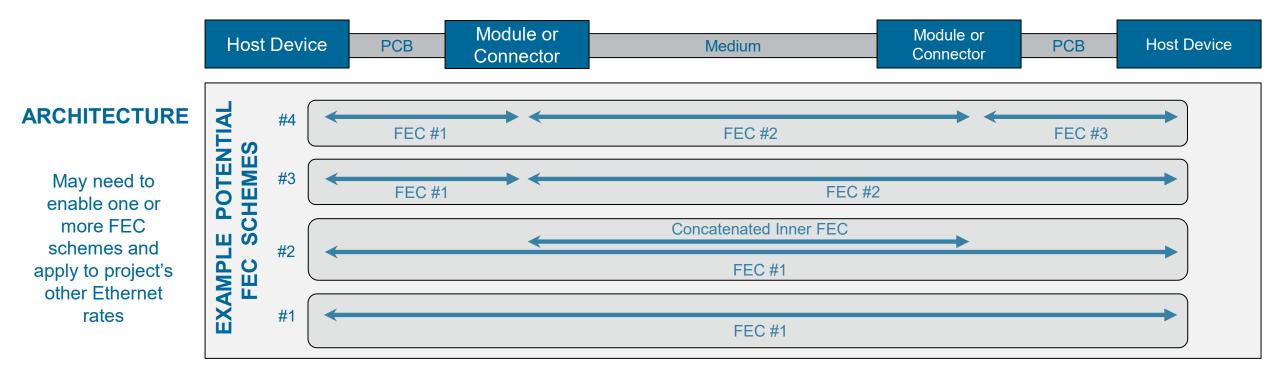
• 1.6 Tb/s Related

- Support a MAC data rate of 1.6 Tb/s
- Support optional sixteen-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Support optional eight-lane 1.6 Tb/s attachment unit interfaces for chip-to-module and chip-to-chip applications
- Define a physical layer specification that supports 1.6 Tb/s operation:
 - over 8 pairs of copper twin-axial cables in each direction with a reach of up to at least 1.0 meter
 - over 8 pairs of SMF with lengths up to at least 500 m
 - over 8 pairs of SMF with lengths up to at least 2 km

Adopted Physical Layer Objectives

Technology Reuse

Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km	Leverage existing or work-in- progress 100 Gb/s per lane (e.g. 3cu, 3ck, 3db) to higher lane counts
200 Gb/s	200 Gb/s	Over 1 lane		Over 1 pair			Over 1 Pair	Over 1 Pair			
400 Gb/s	200 Gb/s	Over 2 Ianes		Over 2 pairs			Over 2 Pair				Develop 200 Gb/s per lane electrical signaling for 1/2/4/8
800 Gb/s	100 Gb/s	Over 8 Ianes	Over 8 lanes	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs			lane variants of AUIs and electrical PMDs
	200 Gb/s	Over 4 lanes		Over 4 pairs			Over 4 pairs	1) Over 4 pairs 2) Over 4 λ 's			
								2) 0001 47.3			Develop 200 Gb/s per optical
	TBD								Over single SMF in each direction	Over single SMF in each direction	fiber for 1/2/4/8 fiber based optical PMDs and 4 lambda WDM optical PMD
1.6 Tb/s	100 Gb/s	Over 16 lanes									
	200 Gb/s	Over 8 Ianes		Over 8 pairs			Over 8 pairs	Over 8 pairs			Potential for either direct detect and / or coherent signaling
											technology

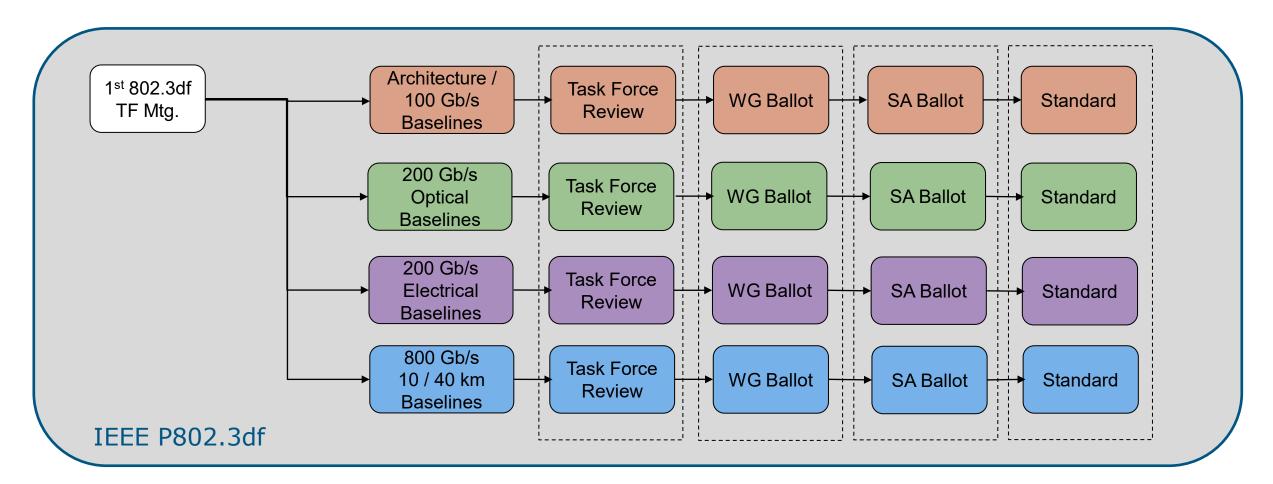

Making it all work together

11 Jan 2022 IEEE P802.3df Task Force, IEEE 802.3 Jan 2022 Electronic Interim Meeting

Technical Framing & Overview

- At 18 Jan 2022 Meeting, further technical insight will be provided by Track Chairs –
 - Architecture and Logic Overview, Gustlin
 - Optical PMDs Overview, Nowell
 - Electrical PMDs and AUIs Overview, Lusted

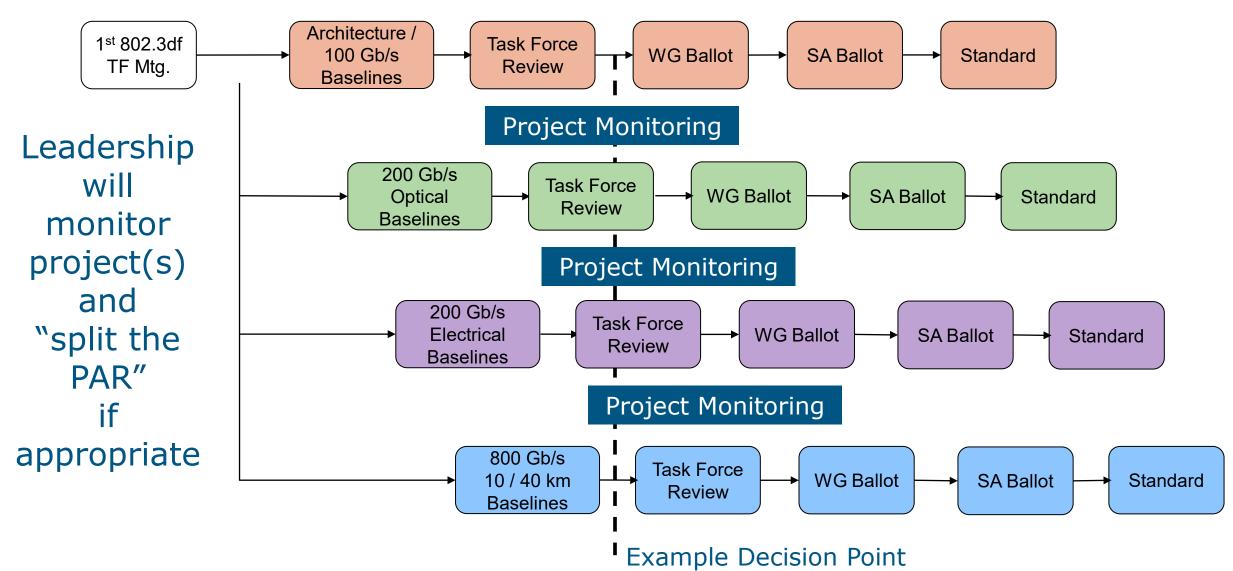
Development of Architecture & FEC Schemes


Organization of Project Work

Logic	Electrical	Optical					
 Amendments to MAC, RS, and MAC PHY interfaces RS and MII Extender Sublayers? PCS functions PMA functions Provide support to enable mapping over OTN 	 Extender Sublayer? C2C AUIs C2M AUIs Copper PMDs Channel characteristics for electrical interfaces and PMDs 	 Optical PMDs MDIs? Media Characteristics 					
FEC Architecture and Budget							
Overall Architecture	 FEC related to electrical interfaces and PMDs 	 FEC related to Optical PMDs 					
 Management related to Logic functions (Clauses 30, 45, etc.) 	 Management related to electrical interfaces and PMDs (Clauses 30, 45, etc.) 	 Management related to Optical PMDs (Clauses 30, 45, etc.) 					

Further insight to be provided by Track Leadership @ 18 Jan 2022 Meeting

11 Jan 2022 IEEE P802.3df Task Force, IEEE 802.3 Jan 2022 Electronic Interim Meeting


Project Flow – Ideal Circumstances

Under "ideal circumstances" the various technology branches will align.

11 Jan 2022 IEEE P802.3df Task Force, IEEE 802.3 Jan 2022 Electronic Interim Meeting

Project Flow – Potential Reality

Moving Forward

□ The development of the overall architecture is key.

- Timelines for different technology branches are unknown at this point, but TF leadership will monitor to progress the project.
- □ "Splitting the PAR" is a known process in IEEE 802
 - □ PER IEEE 802 Operations Manual, Section 9.2 IEEE 802 LMSC approval

At the discretion of the IEEE 802 LMSC Chair, PARs for ordinary items (e.g., Maintenance PARs) and PAR changes essential to the orderly conduct of business (e.g., <u>division of</u> <u>existing work items</u> or name changes to harmonize with equivalent ISO JTC-1 work items) may be placed on the IEEE 802 LMSC agenda if delivered to IEEE 802 LMSC members 48 hours in advance