Nomenclature: The Joy of PMD names

Kent Lusted, Intel Corporation

Supporters and Contributors

Contributors:

- Matt Brown, Huawei Canada
- Adee Ran, Cisco
- Howard Heck, Intel

Supporters:

- Matt Brown, Huawei
- Mabud Choudhury, OFS Optics
- Chris Cole, II-VI
- Howard Heck, Intel
- Tom Issenhuth, Huawei
- Robert Lingle, OFS Optics
- Jeff Maki, Juniper Networks
- David Ofelt, Juniper Networks
- Earl Parsons, Commscope
- Adee Ran, Cisco

Nomenclature

• Goal: Align on the nomenclature to enable effective communication during foundational discussions in the 3df Task Force

Key Assumptions

- #1: It is assumed that the TF wants to preserve the BASE-R PCS names and the naming conventions from the 1/2/4-lane versions of the PHYs in IEEE Std. 802.3-202x, P802.3ck, P802.3db
- #2: It is assumed baseline proposals for <= 2km reaches (optical and copper) will use effective lane rates of 100 Gb/s or 200 Gb/s
 - The exact signaling rate per physical layer specification will be determined by the Task Force.
 - Over 2km, pending TF discussion.
- #3: There may be a need to define more versions of the AUIs for new use cases (e.g. CPO, NPO), as noted in <u>lusted b400g 01 210517</u>
 - Discussion of cases is beyond the scope of this specific presentation.
- #4: No names are proposed at this time for all the 500m & 2km SMF, 10km and 40km solutions, pending TF discussion on various aspects of these objectives
 - Talk to Kent offline if you have thoughts

Adopted P802.3df Physical Layer Objectives

4		— Na	ame no	ow —	Name later					
Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	Over 1 lane		Over 1 pair			Over 1 Pair	Over 1 Pair		
400 Gb/s	200 Gb/s	Over 2 lanes		Over 2 pairs			Over 2 Pair			
800 Gb/s	100 Gb/s	Over 8 lanes	Over 8 lanes	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs	Over 8 pairs		
	200 Gb/s	Over 4 lanes		Over 4 pairs			Over 4 pairs	1) Over 4 pairs 2) Over 4 λ 's		
	TBD								Over single SMF in each direction	Over single SMF in each direction
1.6 Tb/s	100 Gb/s	Over 16 lanes								
	200 Gb/s	Over 8 lanes		Over 8 pairs			Over 8 pairs	Over 8 pairs		

https://www.ieee802.org/3/B400G/proj_doc/objectives_b400g_210826.pdf

Rates and Lanes for Consideration

- There are two new Ethernet rates in the project
 - 800 GbE
 - 1.6 TbE
- The project amends two existing Ethernet rates
 - 200 GbE
 - 400 GbE
- There are multiple lane widths in the project to address all of these Ethernet rates
 - 1/2/4/8/16 lanes

100 Gb/s Lane Rate Based

800 GbE

- Some 800 GbE PMD names exist outside of the IEEE 802.3 realm (e.g., Ethernet Technology Consortium)
 - 800G-ETC-KR8, 800G-ETC-CR8
- 800 GbE will have at least two different lane rates:
 - 100 Gb/s/lane
 - 200 Gb/s/lane
 - TBD for the 10km and 40 km SMF objectives
- Let's start with the 100 Gb/s/lane terms for the AUIs, copper cable, backplane, and optical PHYs

800 GbE using 100 Gb/s/lane

Propose to use the following:

- AUI: 800GAUI-8 C2M, 800GAUI-8 C2C
- Copper cable: 800GBASE-CR8
- Backplane: 800GBASE-KR8
- MMF (~50m reach): 800GBASE-VR8
- MMF (~100m reach): 800GBASE-SR8

• SMF will be discussed in a later presentation

200 Gb/s Lane Rate Based

AUIs for 200 Gb/s/lane (<= 800 GbE)

- Optional 200 Gb/s/lane AUI objectives exist for chip-to-module (C2M) and chip-to-chip (C2C)
 - Possible new AUI use cases for CPO and NPO were called out in <u>lusted_b400g_01_210517</u> and are not addressed in this presentation
 - The terms "short/lower-loss" and "long/higher-loss" are not yet comprehended in the following nomenclature proposals, although it could be easily adapted, if such differentiation becomes required
- Propose:
 - 200GAUI-1 C2M and 200GAUI-1 C2C
 - 400GAUI-2 C2M and 400GAUI-2 C2C
 - 800GAUI-4 C2M and 800GAUI-4 C2C

Non-controversial 200 Gb/s/lane Physical Layer names (<= 800 GbE)

Propose:

• Copper cable: 200GBASE-CR1, 400GBASE-CR2, 800GBASE-CR4

The New Rate

Denotation of the next Ethernet rate

- Nomenclature to specify the next Ethernet rate is less clear. How does the Task Force want to represent this new rate?
 - 1600GBASE-xx
 - 1.6TBASE-xx
 - Something else?
- First, let's look at two styles for how it could be written:
 - Option A: 1600GBASE-CR8, 1600GAUI-16 C2x and 1600GAUI-8 C2x
 - Option B: 1.6TBASE-CR8, 1.6TAUI-16 C2x and 1.6TAUI-8 C2x

Example Definition – 1600 Gb/s vs. 1.6 Tb/s

 "1600 Gb/s Attachment Unit Interface (1600GAUI-n): A physical instantiation of the PMA service interface to extend the connection between 1600 Gb/s capable PMAs over n lanes, used for chip-to-chip or chip-to-module interconnections. For chip-to-module interconnections and for chip-to-chip interconnections, two widths of 1600GAUI-n are defined: a sixteen-lane version (1600GAUI-16) and an eight-lane version (1600GAUI-8)"

Dption A

Dption

• **"1.6 Tb/s Attachment Unit Interface (1.6TAUI-n):** A physical instantiation of the PMA service interface to extend the connection between 1.6 Tb/s capable PMAs over n lanes, used for chip-to-chip or chip-to-module interconnections. For chip-to-module interconnections and for chip-to-chip interconnections, two widths of 1.6TAUI-n are defined: a sixteen-lane version (1.6TAUI-16) and an eight-lane version (1.6TAUI-8)"

Example Table – 1600 Gb/s vs. 1.6 Tb/s

	Clause ¹								
	78		180	TBD	TBD	TBD	TBD	TBD	
РНҮ туре	EEE	RS	1600GMII	1600GMII Extender	1600GBASE-R PCS	1600GBASE-R PMA	1600GAUI-8 C2C	1600GBASE-CR8	
1600GBASE-CR8	-	М	М	М	М	М	М	М	

	Clause ²							
	78		180	TBD	TBD	TBD	TBD	TBD
РНҮ туре	EEE	RS	1.6TMII	1.6T MII Extender	1.6T BASE-R PCS	1.6T BASE-R PMA	1.6T AUI-8 C2C	1.6T BASE-CR8 PMD
1.6TBASE-CR8	-	М	М	М	М	М	М	М

Option A

Option B

Example text - 1600 Gb/s vs. 1.6 Tb/s

Dption A

മ

Option

- The interfaces for the inputs of the 800GBASE-R and 1600GBASE-R PMAs are defined.... For 800GBASE-R PMAs, electrical interfaces connecting PMA sublayers, known as 800GAUI-n, are defined in Annex TBD or Annex TBD. For 1600GBASE-R PMAs, electrical interfaces connecting PMA sublayers, known as 1600GAUI-n, are defined in Annex TBD or Annex TBD....
 - ...Each 200GAUI-1, 400GAUI-2, 800GAUI-4, and 1600GAUI-8 C2M data path contains one, two, four, or eight differential lanes....
- The interfaces for the inputs of the 800GBASE-R and 1.6TBASE-R PMAs are defined.... For 800GBASE-R PMAs, electrical interfaces connecting PMA sublayers, known as 800GAUI-n, are defined in Annex TBD or Annex TBD. For 1.6TBASE-R PMAs, electrical interfaces connecting PMA sublayers, known as 1.6TAUI-n, are defined in Annex TBD or Annex TBD....
- ...Each 200GAUI-1, 400GAUI-2, 800GAUI-4, and 1.6TAUI-8 C2M data path contains one, two, four, or eight differential lanes....

Rounding Out the Objectives List

- Depending on the style selected for the new rate (1600G vs. 1.6T), the AUI C2M, AUI C2C and copper cable names would take on the form of:
 - xxAUI-8 C2M
 - xxAUI-8 C2C
 - xxAUI-16 C2M
 - xxAUI-16 C2C
 - xxBASE-CR8

Straw Polls

Potential Straw Poll #1

- For the next Ethernet rate, I prefer nomenclature in the style of:
 - Option A: 1600G (e.g., 1600GBASE-CR8, 1600GAUI-16 C2x and 1600GAUI-8 C2x)
 - Option B: 1.6T (e.g., 1.6TBASE-CR8, 1.6TAUI-16 C2x and 1.6TAUI-8 C2x)

Potential Straw Poll #2

- I support using the nomenclature in the AUI, BP, Cu cable, MMF 50m and MMF 100m columns of lusted_3df_xx_0122, slide 24?25?
 - Yes
 - No
 - Abstain

The Full Table

To be named later

Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	1 lane = AUI-1		1 pair = CR1			1 pair = <mark>TBD</mark>	1 pair = <mark>TBD</mark>		
400 Gb/s	200 Gb/s	2 lane = AUI-2		2 pair = CR2			2 pair = <mark>TBD</mark>			
800 Gb/s	100 Gb/s	8 lane = AUI-8	8 lane = KR8	8 pair = CR8	8 pair = VR8	8 pair = SR8	8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		
	200 Gb/s	4 lane = AUI-4		4 pair = CR4			4 pair = <mark>TBD</mark>	1) Over 4 pairs = TBD 2) Over 4 λ 's = TBD		
	TBD								TBD	TBD
1.6 Tb/s	100 Gb/s	16 lane = AUI-16								
	200 Gb/s	8 lane = AUI-8		8 pair = CR8			8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		

Note: Rate part of the name omitted for brevity

THANKS!

The Full Table – 1600G

To be named later

Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	200GAUI -1		200GBASE- CR1			1 pair = <mark>TBD</mark>	1 pair = <mark>TBD</mark>		
400 Gb/s	200 Gb/s	400GAUI -2		400GBASE- CR2			2 pair = <mark>TBD</mark>			
800 Gb/s	100 Gb/s	800GAUI -8	800GBA SE-KR8	800GBASE- CR8	800GBA SE-VR8	800GBA SE-SR8	8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		
	200 Gb/s	800GAUI -4		800GBASE- CR4			4 pair = <mark>TBD</mark>	1) Over 4 pairs = TBD 2) Over 4 λ 's = TBD		
	TBD								TBD	TBD
1.6 Tb/s	100 Gb/s	1600GA UI-16								
	200 Gb/s	1600GA UI-8		1600GBASE- CR8			8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		

The Full Table – 1.6T

To be named later

Ethernet Rate	Assumed Signaling Rate	AUI	BP	Cu Cable	MMF 50m	MMF 100m	SMF 500m	SMF 2km	SMF 10km	SMF 40km
200 Gb/s	200 Gb/s	200GAUI -1		200GBASE- CR1			1 pair = <mark>TBD</mark>	1 pair = <mark>TBD</mark>		
400 Gb/s	200 Gb/s	400GAUI -2		400GBASE- CR2			2 pair = <mark>TBD</mark>			
800 Gb/s	100 Gb/s	800GAUI -8	800GBA SE-KR8	800GBASE- CR8	800GBA SE-VR8	800GBA SE-SR8	8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		
	200 Gb/s	800GAUI -4		800GBASE- CR4			4 pair = <mark>TBD</mark>	1) Over 4 pairs = TBD 2) Over 4 λ 's = TBD		
	TBD								TBD	TBD
1.6 Tb/s	100 Gb/s	1.6TAUI- 16								
	200 Gb/s	1.6TAUI- 8		1.6TBASE- CR8			8 pair = <mark>TBD</mark>	8 pair = <mark>TBD</mark>		