PAMn vs Channel and FEC Investigations for 224 Gbps

Mike Li, Hsinho Wu, Masashi Shimanouchi, Itamar Levin, and Ariel Cohen

Intel

Mar 16, 2022

Contents

- I. 224 Gbps Modulation and Channel Characteristics
- **II. 224 Gbps Modulation and FEC**
- **III. 224 Gbps Transceiver Development and Characteristics**
- **IV. Summary and Conclusion**

I. 224 Gbps Modulation and Channel Characteristics

224 Gbps Modulation Scheme and Channel Characteristics

- Currently, PAM4 is used in 53 Gbps and 106 Gbps Ethernet and OIF-CEI-56G/112G
- Naturally, it is highly desired to continue using PAM4 in the 224 Gbps, considering
 - Backward compatibility
 - Electrical to optical compatibility
 - Testing methodology and equipment maturity and availability

PAM_L Modulation Considerations for 224Gbps

- To continue using PAM4 for 224Gbps implies
 - SERDES:
 - 2X symbol rate, 2X bandwidth (BW) for AFE, 2X reduction in jitter/noise spectrum density compared with 112 Gbps PAM4.
 - Intel recent 224Gbps TC (2022) has demonstrated that those performance doubling can be achieved
 - Channel
 - End-to-end channel (including package, break-out, PCB/cable, and connectors) performance needs to improve such that the IL at its Nyquist will be kept at the close vicinity of those for 112 Gbps.
 - Good progresses had been made in the industry in achieving those goals.

Comparisons of 224 Gbps PAM_L

Data Ratem Gb/s	224	224	224	224	224	224
PAMn Levels	4	5	6	7	8	16
Bit per symbol	2.00	2.32	2.58	2.81	3.00	4.00
Symboe Rate (GS/s)	112.00	96.47	86.66	79.79	74.67	56.00
UI (ps)	8.93	10.37	11.54	12.53	13.39	17.86
Nyquist Freq	56.00	48.24	43.33	39.90	37.33	28.00
SNR Delta	0.00	-2.50	-4.44	-6.02	-7.36	-13.98

Simulation Die and Package Considerations

- Die model and characteristics are based on Intel 224Gbps test chips (e.g., [1], [2]).
- Package model and characteristics are aligned with industry RM and Intel package projection at 2024-2025 (e.g., [3]).

PAM_L and Channel Investigations – Channel #1

PAM_L and Channel Investigations – Channel #2

PAM_L and Channel Investigations – Channel #3

PAM_L and Channel Investigations – Channel #4 [4]

PAM_L and Channel Investigations -- Summary

	PAM4		PAI	M6	PAM8	
Channel	IL/ILD/ICN @56GHz	EH/EW @10 ⁻⁴	IL/ILD/ICN @44.8GHz	EH/EW @10 ⁻⁴	IL/ILD/ICN @37.3GHz	EH/EW @10 ⁻⁴
CH #1	38dB/17dB/0mV	0mV/0ps	20dB/4dB/0mV	5.88mV/0.85ps	13dB/1dB/0mV	0.71mV/0.33ps
CH #2	23dB/7dB/0mV	12.85mV/1.54ps	16dB/1dB/0mV	9.58mV/1.66ps	12dB/1dB/0mV	7.37mV/1.23ps
CH #3	27dB/3dB/0mV	10.73mV/1.71ps	24dB/1dB/0mV	7.84mV/1.54ps	20/0dB/0mV	3.63mV/1.11ps
CH #4	25dB/1dB/1.09mV	15.37mV/1.34ps	22dB/1dB/0.99mV	13.09mV/1.35ps	19dB/1dB/0.93mV	6.96mV/1.13ps

Conclusions

- It is clear that the optimal modulation critically depends on the channel performance and characteristics.
- Simulations have shown that with reasonable channel IL (i.e.,~30dB IL, and ≤3dB ILD, at the PAM4 Nyquist), and a transceiver design (die and package) that works well at PAM4 rate, PAM4 would out-perform PAM_L, where L > 4.

II. 224 Gbps Modulation and FEC

Reed-Solomon FEC: RS(n,k,t) over GF(2^m)

Structure

- FEC code word consists of n FEC symbols
 - n = (k message symbols) + (n-k) parity symbols
- Each FEC symbol consists of m bits
- Error Correction Capability
 - Can correct up to t = (n-k)/2 FEC symbol errors

code word consisting of n FEC symbols

PAM_L Random Error and Burst Error on FEC

Random Error of Modulation Symbol

- Each error likely causes one FEC symbol error
 - Probability of random error is of our concern
- Burst Error of Modulation Symbol
 - One burst error can cause multiple FEC symbol errors
 - Probability of burst error and its length is of our concern
 - e.g. 6-UI long burst errors cause 2 FEC symbol errors with PAM4, but may cause 3 FEC symbol errors with PAM6

code word consisting of n FEC symbols

RS(n,k,t) over GF(2^m) with PAM_L

- Each PAM_L modulation symbol (1 UI) carries log₂(L) bits
 - PAM_L UIs required to send each FEC symbol summarized in the table below
 - PAM_2 (NRZ) uses 10 UIs, PAM_4 uses 5 UIs, ...
 - FEC with higher order PAM_L would suffer more from burst error
 - As discussed in the previous slide and the table below

PAM	log ₂ (L)	Mod_Symb/FEC_Symb
2	1	10
4	2	5
6	2.58 ≈ 2.5	4
8	3	3.33 ≈ 4

Error Probabilities and FEC Performance

Two-State Error Model

Simple and Frequently Used Error Model

Burst error triggered by random error, and cased by error propagation

Example KP FEC Performance vs. PAM-4/6/8

- FEC performance model
 - Obtained by combining FEC structure and two-state error model
- If max pre-FEC BER is 10⁻⁴
 - PAM4 can achieve post-FEC BER < 10⁻¹⁵
 - PAM6 and PAM8 would require stronger
 FEC to achieve post-FEC BER < 10⁻¹⁵

III. 224 Gbps Transceiver Development and Characteristics

Intel 224 Gbps-PAM4-LR Transceiver Highlights ([1],[2])

- ~2X TX/RX data path bandwidth and sampling rate increase
- ~ 2X jitter and noise reduction
- ~2X power reduction per bit
 compared with 112 Gbps-PAM4
 generation

224 Gbps-PAM4-LR Transceiver Test Chip

- Solid full-link transmitter and receiver performance demonstrated on the test chip
 - For TX measurement, eye diagram measured on an oscilloscope
 - For RX BER measurement, TX on one test chip transmits to RX on another test chip through a > 31 dB channel

World's first 224 Gbps-PAM4-LR Transceiver Test Chip

224 Gbps Test Channel

PAM4 224 Gbps Full System Measurement Results (> 31 dB Insertion Loss @ Nyquist 56 GHz)

IV. Summary and Conclusions

Our investigations and considerations of backward, optical modulation, FEC compatibility, and broad market potential, suggest that PAM4 remains to be the optimal/common modulation for various reaches, C2M (VSR), C2C (MR), and CR (LR), for 224 Gbps electrical I/Os, where BGA-to-BGA channel IL is ~30 dB or less at PAM4 Nyquist.

References:

[1] J. Kim et al, "A 224Gb/s DAC-Based PAM-4 Transmitter with 8-Tap FFE in 10nm CMOS", *ISSCC*, 2021.

[2] A. Khairi "A 1.4 pJ/b 224 Gb/s- PAM4 SERDES Receiver with 31 dB Loss Compensation", *ISSCC*, 2022.

[3] J. Jiang et al, "Designing 224G PAM4 High Performance FPGA Package and Board with Confidence", *Designcon*, 2021.

[4] 1 meter TP1-TP4 CR Channel from OSFP (hosted by Amphenol).

Thank You!

