

COM Simulation and Analysis for 200Gbps/Lane Chip-to-Module

Tobey P.-R. Li, Mau-Lin Wu

MediaTek

IEEE 802.3df Task Force

2022/03/16

Outline

Overview

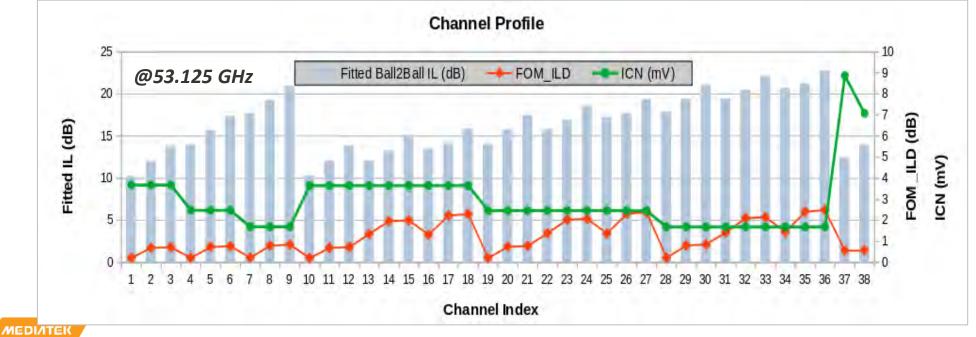
- Motivation and methodology
- Objectives
- **COM simulation for 200Gbps/Lane PAM4 C2M**
- **Channel feasibility: key challenges**
- **G** SerDes feasibility: COM sensitivity to key parameters
- **Conclusion**

Motivation and Methodology

- Straw poll #4 (Feb. 24, '22) PAM4 for 200G/L optical PMDs (500m & 2km)
 - Q: Will be PAM4 feasible for 200G/L C2M?
- Exploration of the feasibility of 200G/L chip-to-module AUI PAM4
 - Channel & SerDes requirements?
- Channel requirements analysis by COM v3.7 simulation
 - All available 200G C2M channels from IEEE & OSFP (total 38x)
 - Based on baseline SerDes
- SerDes feasibility starting from COM sensitivity by sweeping key SerDes parameters
 - Provide the directions to make good trade-off between performance & power/cost of SerDes

Objectives

- Do
 - Leverage published channel materials to represent potential 200Gbase channel characteristics and evaluate their corresponding performance
 - Analyze 200G/L PAM4 C2M feasibility from the system's point of view
 - Point out key challenges of channel reflection (roll-off) & crosstalk
 - Direction of SerDes COM sensitivity of key parameters
- Don't
 - Offer the SerDes or channel solutions



C2M Channel Profile

- Channel variations mainly come from
 - Host/Module trace length & impedance
 - BGA breakout topology
 - Connector transition finger connectivity
 - Crosstalk

CH Index	S-Parameter File	Crosstalk	Contributor	Source
1~36		1 FEXT, 1 NEXT	C2M model from Amphenol BGA model from Keysight	OSFP200GEL
37	KEY_C2M_200G_120G_ 2p5HCB_022422_Thru	1 FEXT, 1 NEXT	Rick Rabinovich	IEEE 802.3df:
38	KEY_C2M_200G_120G_ 4p0HCB_022422_Thru	1 FEXT, 1 NEXT		rabinovich_3df_022422

The objective is to explore diverse channels to assess C2M technology feasibility
Channel ball2ball IL: 10~23 dB
FOM_ILD: 0~3 dB

COM Simulation Consideration: 200G Baseline

BRE/ SAVE_

fixtu

TDF

Tuk

RX_C

Parameter	Table 93A-1 parameters Setting	Units	Information	
f_b	106.25	GBd	information	
f min	0.05	GHz		-
Delta_f	0.01	GHz		
C d	[0.7e-4 0.7e-4]	nF	[TX RX]	
1.5	[0.12 0.12]	nH	[TX RX]	
C b	[0.3e-4 0.3e-4]	nF	[TX RX]	
z_p select	[12]	. UC	[test cases to run]	-
z_p select	[15 31; 1.8 1.8]	mm	[test cases]	
z_p (NEXT)	[8 15 :00]	mm	[test cases]	
z_p (FEXT)	[15 31; 1.8 1.8]	mm	[test cases]	
z_p (RX)	[8 15 :00]	mm	[test cases]	
2_p (kx) C_p	[0 0.65e-4]	nF	[TX:RX]	
RO	50	Ohm	[IA BA]	
R d	[50 50]	Ohm	[TX RX]	
-	0.413	V	[IA KA]	
A_V	0.413	V		
Ale		_		
A_ne	0,45	V		-
L		Course A.D.		
M COM	32	Samp/UI		
samples_for_C2M T_O	32	Samp/UI		-
		mUI V	In second	0 0005 0 005/
AC_CM_RMS	0 filter and Eg	V	[test cases]	0.0235 0.0256
	0.75	"fb		-
f_r c(0)	0.75	TD		
			min	
4-21	[-0.34:0.02:0.1]		[min:step:max]	
c(-2)	[-0.1:0.02:0.1]		[min:step:max]	
c(-3)	[-0.1:0.02:0.1]		[min:step;max]	
-41	[-0.04:0.02:0.04]			
C(1)	[-0,1:0.02;0,2]		[min:step:max]	1
N_D	8	<u>U</u> I		
D_IIIdA(4)	0.85		As/dffe1	
b_max(2N_b)	[0.3 0.3 0.2 "ones(1,5)]		As/dfe2,.N_b	
b_min(1)	0,3		As/dffe1	
b_min(2,.N_b)	[0.05 0.05 -0.03 "ones(1,5)]	1	As/dfe2N_b	
g_DC	[-13:1:-2]	dB	[min:step:max]	1
f_z	42.5	GHz		1
f_p1	42.5	GHz		1
f_p2	106.25	GHz		
g_DC_HP	[-3:0,5:0]		[min:step:max]	
f_HP_PZ	2.65625	GHz	-	
G_Qual	[-2-13;-3-12;-4-11;-5-10]	dB	ranges	
G2 Qual	0 -1 -2 -3]	dB	ranges	

		/O control		Table 93A-3 parameters				
1	DIAGNOSTICS	1	logical	Parameter	Setting	Units		
	DISPLAY_WINDOW	0	logical	package_tl_gamma0_a1_a2	[0.0.000644085 0.00018018]			
1	CSV_REPORT	0	logical	package tl tau	5.700E-03	ns/mm		
1	RESULT_DIR	.\results\100GEL	C2M_host_{date	package_Z_c	[87.5 87.5 ; 92.5 92.5]	Ohm		
1	SAVE_FIGURES	0	logical	KN & FOM ILD parameters				
1	Port Order	[1324]	1	f_v	0.594	*Fb		
	RUNTAG	C2M_eval_		ff	0.594	GHz f_r specified in first column		
1	COM CONTRIBUTION		logical	f_n	0.594	GHz		
1	Local Search	2	1.1	f_2	80	GHz		
1	C	Operational		A_ft	0.600	V		
	VEC Pass threshold	VEC Pass threshold 12 db			0.600	V		
1	EH min	10	χ	A_nt				
1	ERL Pass threshold	7.3	dB					
1	Min_VEO_Test	0	mV 📲	Histogram Window Weight	gaussian	Seletions (rectangle, gaussian, du		
1	DER 0	1E-05	~			500000 B00000		
1	Tr	0.00375	TIS-					
	FORCE_TR	1	logical	COM Pass threshold	3			
1	PMD type	C2M						

Die model : keep the similar IL as 100G (parameters need further investigation) **PKG model**: 25% trace loss improvement from 100G, follows the values proposed in oif2021.596.01 (parameters need further investigation)

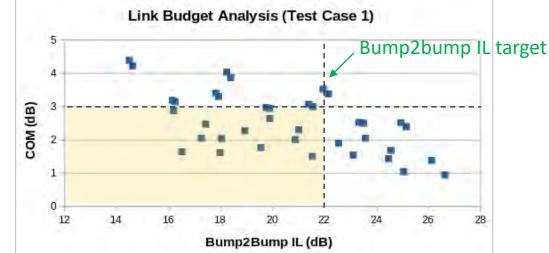
Equalization length & frequency/Rise time/Jitter/Noise scaled with 2x baud rate

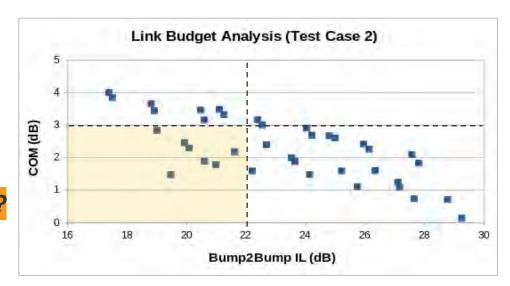
DER/TX swing/TX SNR/Nonlinearity kept the same as 100G

COM version: 3.7

- Test case 1 (short package): [z_p (TX) z_p (RX)] = [15 8] mm
- Test case 2 (long package) : [z_p (TX) z_p (RX)] = [31 15] mm

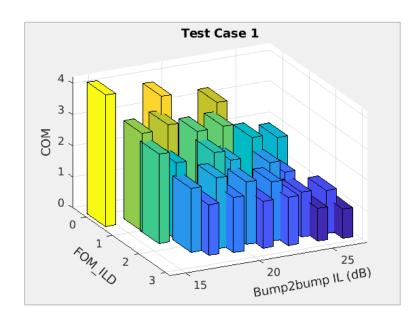
	Louge pres pres presision a					
g_DC	[-13:1:-2]	dB	[min:step:max]		Noise, jitt er	
f_z	42.5	GHz		sigma_R/	0.01	<u>U</u>
f_p1	42.5	GHz		A_DD	0.02	<u> </u>
f_p2	106.25	GHz	1	eta_0	2.05E-08	V^2/GHz
g_DC_HP	[-3;0,5:0]		[min:step:max]	SNR_TX	32.5	dB
f_HP_PZ	2.65625	GHz		RLM	0.95	
G_Qual	[-2-13;-3-12;-4-11;-5-10]	dB	ranges			
G2_Qual	[0 -1 -2 -3]	dB	ranges			

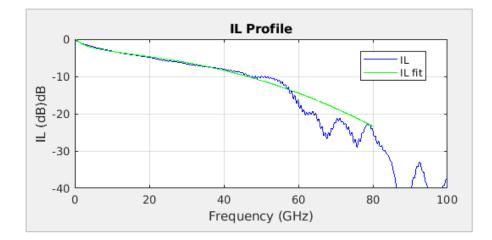

* TX C_p = 0 fF as it is included in the channel model

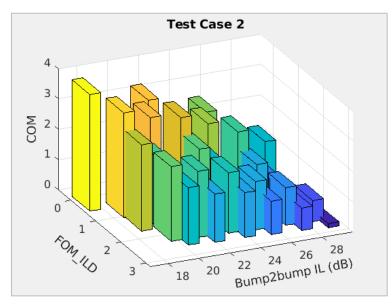


COM Simulation for 200G/L PAM4 C2M

- Whole link budget analysis
 - To allow the interoperability among channel components
 - Analyze performance from the system's point of view
 - Evaluate COM instead of VEC & VEO
- Whether 200G/L PAM4 C2M works?
 - If keep the same bump2bump IL target from 100G to 200G
 - IL target in 100G/L PAM4 C2M:
 16 dB ball2ball + PKG loss = ~22 dB bump2bump
 - If make SerDes capability aligned from 100G to 200G


22dB bump2bump still reasonable for 200G/L C2M?



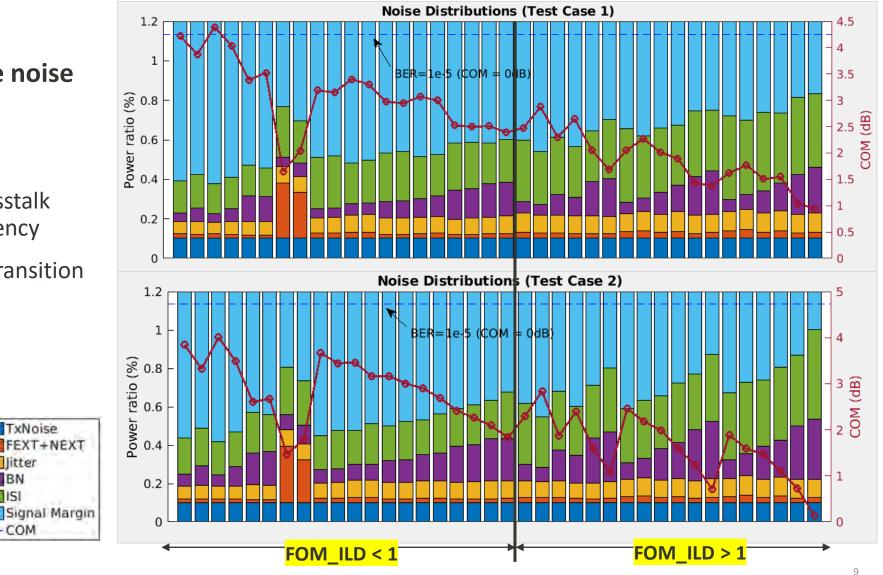


Channel Feasibility: FOM_ILD

- FOM_ILD represents reflection severity
 - Banks of floating taps (FLTs) are needed with increasing FOM_ILD
 - Roll-off in IL profile
 - Can cause severe IL degradation at Nyquist frequency
 - Can cause multiple reflections
- FOM_ILD < 1 feasible?

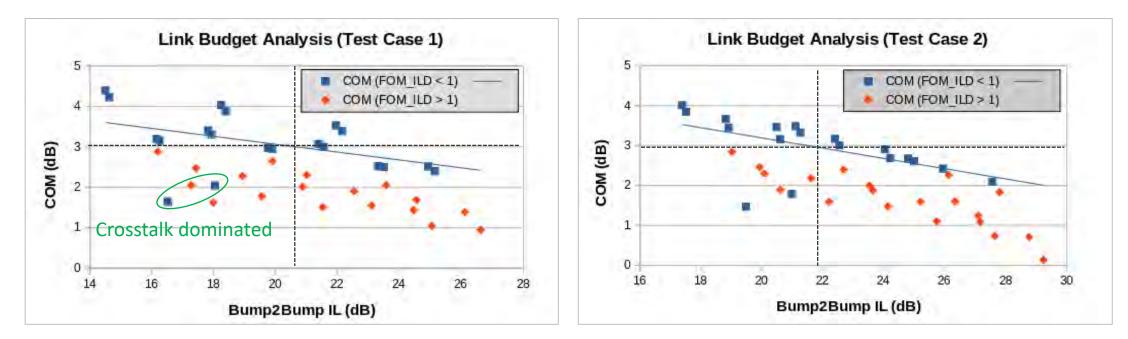
Channel Feasibility: FOM_ILD & Crosstalk

- **Residual ISI caused by** reflection may dominate noise budget
- **Concerns in crosstalk**
 - PAM4 feasibility: crosstalk _ increases with frequency
 - Particular in BGA & transition via region


TxNoise

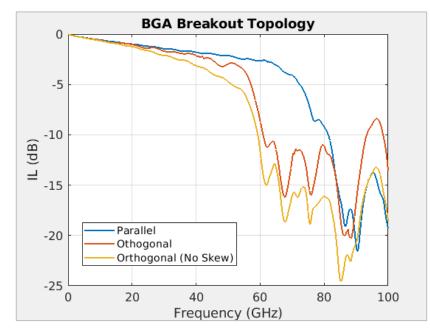
litter

BN

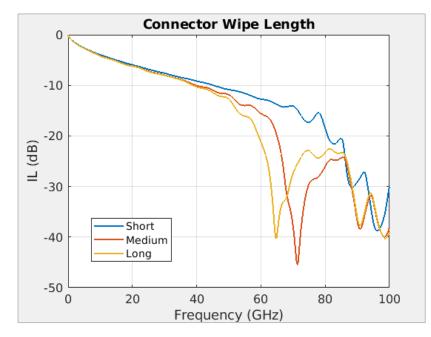

151

-COM

200G/L PAM4 C2M Feasibility: Reach



- Support 22dB bump2bump IL seems possible
 - If can keep IL at frequency of interest at the close vicinity of that for 100Gb/L
 - If SerDes capability can align with increased baud rate
- Short channel effect in test case 1 needs further investigation
 - Will be accentuated by higher Nyquist frequency



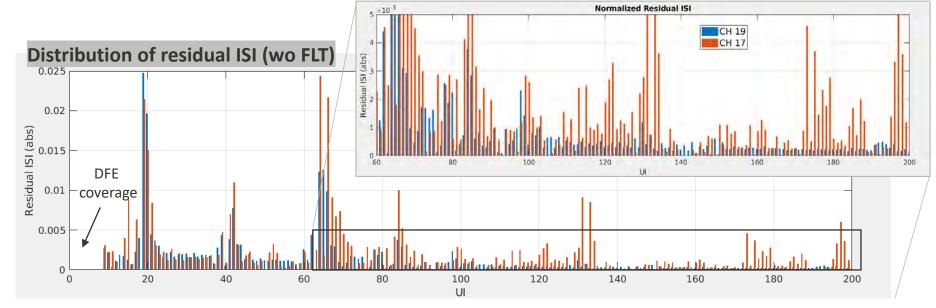
Roll-Off in IL Profile

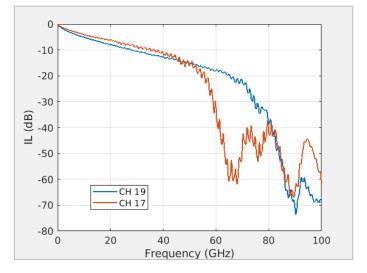
- Impairments in next generation have been discussed in noujeim_3df_01_220224
 - Including BGA dimensions, connector transition connectivity, and other structures
- Frequency of resonances characterizing impairments affects roll-off characteristics
 - Can cause multiple reflections, especially challenging for short channels

BGA breakout model from Keysight via OSFP200GEL

C2M channel with effective wipe sweep from Amphenol via OSFP200GEL

Impact from Roll-Off

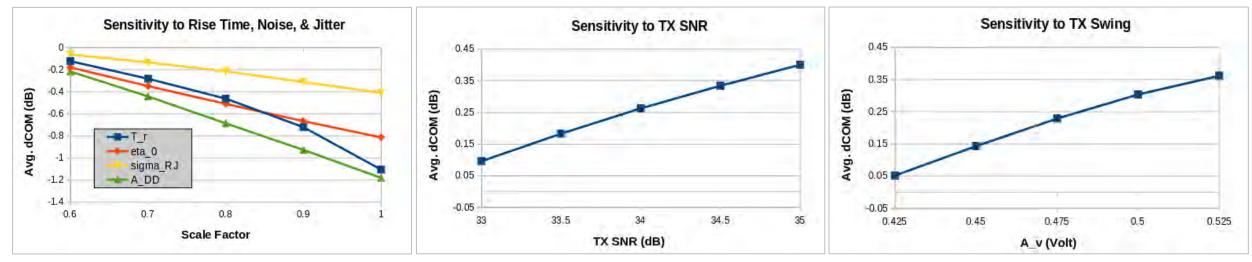

• COM results of two channels with different resonance frequencies


	CH IL (dB)	FOM_ILD	COM (w/o FLT)	COM (wi 3*3 FLT)
CH 19	14.04	0.21	3.32	4.88
CH 17	14.17	2.23	1.89	3.43

*Max. UI span for floating taps: 80

- Roll-off in proximity of Nyquist frequency will cause multiple reflections
 - More DFE taps or banks of floating taps (FLTs) are required
- Resonances just beyond Nyquist seems not good enough

 \rightarrow Required bandwidth?



Sensitivity to Transceiver Capability

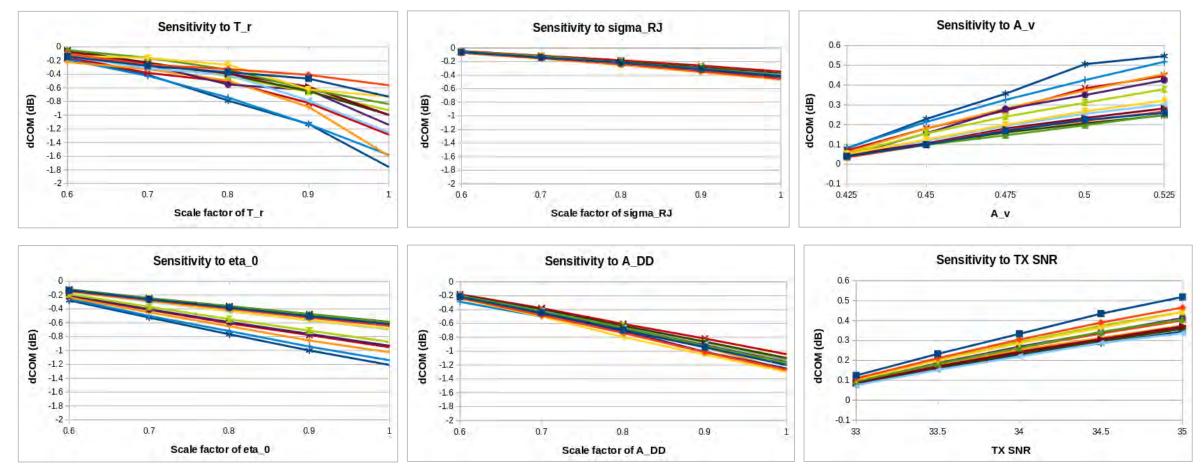
- Necessity of delicate balance among performance, power, and area in SerDes design
 - Possibility of increased SerDes performance and functionality (200G baseline shown in P.6)?
- COM sensitivity check of key SerDes parameters
 - SerDes alternatives can be observed from the results of sensitivity analysis
 - For jitter, a stricter A_DD may be a complementary solution for sigma_RJ without sacrificing performance

* Scale factor = 1 \rightarrow 100G values

* Scale factor = 0.5 \rightarrow 200G expected values (Baseline)

• Choose critical channels with 2 < COM < 4 for analysis

Conclusions of 200G/L PAM4 C2M


- Feasibility of 200G/L PAM4 C2M requires both channel and SerDes technology enablement
 - Keep IL profile at frequency of interest at the close vicinity of that for 100G/L
 - SerDes capability should be enhanced as higher Nyquist frequency
- Channel feasibility is analyzed with
 - Potential reach: bump2bump IL ~22 dB
 - Ball2ball (TP0 to TP1a) IL target for 200G C2M could be derived from 22 dB once the consensus of package model have been reached
 - Resonances characterizing impairments & crosstalk are observed
 - Short channel effects need further investigation
- SerDes feasibility starts with the sensitivity check of key parameters, further investigation will be conducted with the trade-off among performance, power, & area

APPENDIX

Sensitivity to Transceiver Capability

^{*}Each curve represents one channel