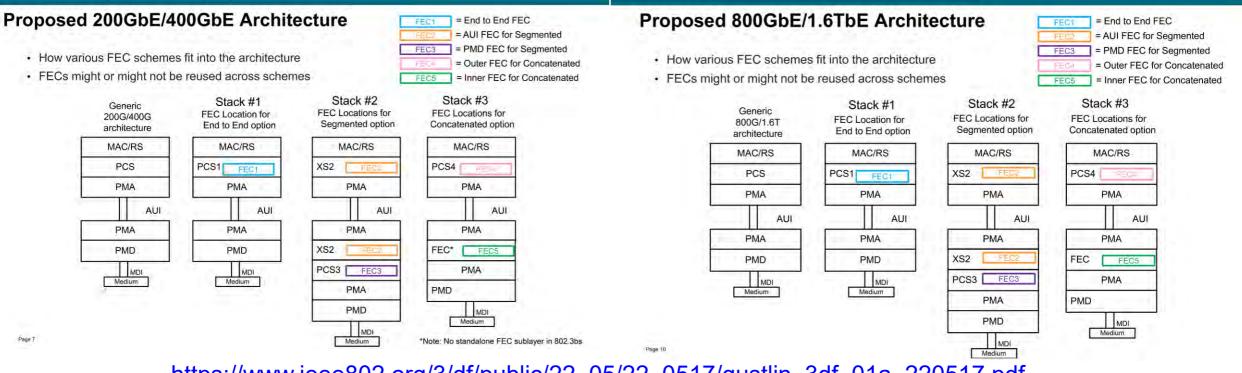
Proposal of Inner Code for 200 Gb/s per Lambda IM-DD Optical PMD

Will Bliss, Broadcom Xinyuan Wang, Huawei Technologies Sridhar Ramesh, MaxLinear Phil Sun, Credo Semiconductor Henry Wong, Alphawave


Supporters:

- Xiang He, Huawei
- Hao Ren, Huawei
- Yu Xu, Huawei
- Vasu Parthasarathy, Broadcom
- Cathy Liu, Broadcom
- Weiqiang Cheng, China Mobile
- Haojie Wang, China Mobile
- Rich Mellitz, Samtec
- Roberto Rodes, II-VI
- Vipul Bhatt, II-VI
- Frank Chang, Source Photonics
- Supriyo Dey, Eoptolink
- John Johnson, Broadcom
- Eugene Opsasnick, Broadcom
- David Piehler, Dell
- Jon Lewis, Dell
- Kohichi Tamura, CIG
- Scott Schube, Intel

- Ed Ulrichs, Intel
- Adam Healey, Broadcom
- Hua Zhang, Hisense
- Jianwei Mu, Hisense
- Jim Theodoras, HG Genuine
- Hai-Feng Liu, HG Genuine
- Drew Guckenberger, MaxLinear
- Atul Srivastava, NEL
- Kuen-Ting Tsai, Molex
- Chris Doerr, Aloe Semiconductor
- David Cassan, Alphawave
- Tom Palkert, Macom
- Ryan Latchman, Macom
- Tom Huber, Nokia
- Chris Cole, Quintessent
- Chan-Chih (David) Chen, AOI
- Zhigang Gong, O-Net
- Jeff Maki, Juniper
- Eric Maniloff, Ciena
- Matt Brown, Huawei

Motivation: Inner Code from Adopted Logic Baseline

- Adopted logic layer baseline includes stack #3 for concatenated scheme.
- □ In Gustlin_3df_01_2211XX, RS(544,514) is proposed for FEC1/2/4.
- □ FEC5, inner code, is proposed in this contribution based on KP4 RS(544,514) as the outer code.
 - Concatenated inner code does not preclude segmented KP4 if/as needed by 200G AUI

https://www.ieee802.org/3/df/public/22_05/22_0517/gustlin_3df_01a_220517.pdf

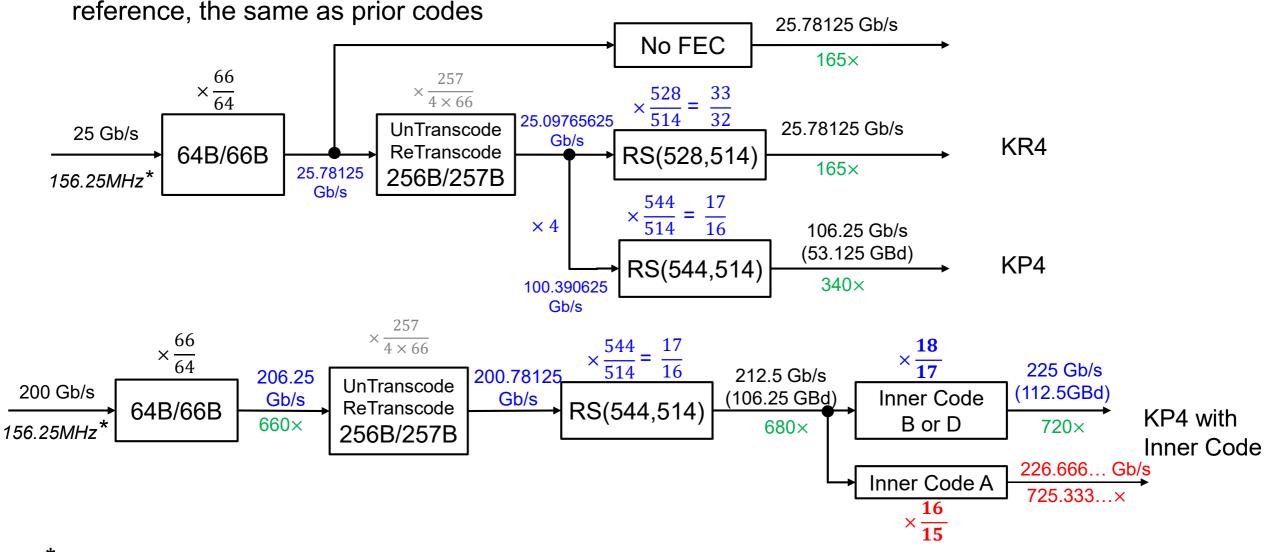
Soft-Decision Concatenated* Inner Codes for Higher Coding Gain

- Soft-decoded Inner concatenated codes with KP4 outer code are the only proposals with high net coding gain, and low area, power, and latency
 - An extra dB or two of operating link margin, over that provided by end-to-end KP4 RS(544,514) FEC, would be helpful in enabling a robust and diverse optical component roadmap
- Several soft-decision BCH/Hamming codes have been proposed that relax pre-FEC BER of 200 Gb/s per lane PAM4 optical PMD from ~2.4e-4 (KP4 alone) to the range of ~[2e-3 to 4.8e-3]
 - > A. 15/16 rate Extended Hamming(128,120) in <u>patra_3df_01_2207</u>, <u>bliss_3df_01c_220517</u>
 - B. 17/18 rate Hamming (BCH) (144,136) in <u>he_3df_01_221005</u>
 - C. 17/19 rate Hamming (BCH) (76,68) further shortened from BCH(144,136) in <u>he_3df_01_221005</u>
 - D. 17/18 rate Extended Hamming code with coding properties of binary (76,68), constructed as a shortened (128,120), but which protect as a binary (144,136) code per <u>bliss_3df_01_220929</u>
 - XOR(MSB,LSB) of the 68 message PAM4 symbols reduces the inner code 'message' to 68 bits

*Note: Concatenated coding is flexible in allowing both an end-to-end as well as segmented approach

Inner Code Rates: 15/16, 17/18, or 17/19

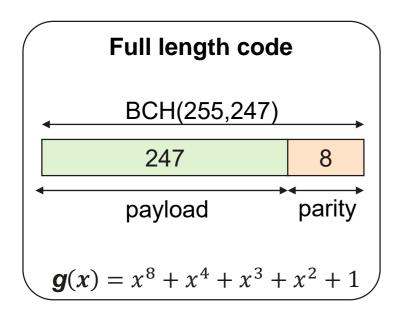
- □ 5.88% overhead from rate 17/18 code choice is advantageous
 - > Avoids further line bit rate increases and their associated losses and costs
 - Keeps the simple historic Xtal references

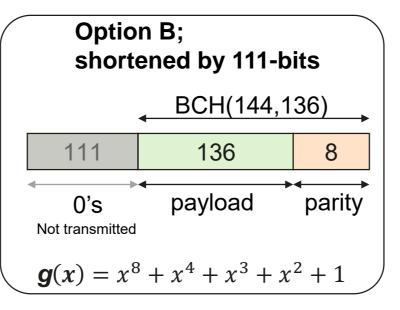

Code Option	Inner code	Code Rate	Codeword effective n <i>bits</i>	Message effective k <i>bits</i>	Baud Rate (GBd)	Bit Rate (Gb/s)	Multiple of 156.25MHz	BER_in for KP4 threshold*
A	Extended Hamming (128,120)	15/16	128	120	113.333 	226.666	~725.333	5.5e-3
В	BCH(144,136)	17/18	144	136	112.5	225	720	5.0e-3
С	Shortened BCH(76,68) from BCH(144,136)	17/19	76	68	118.75	237.5	760	8.2e-3
D	Extended Hamming (128,120) shortened to (76,68) with XOR of message PAM-4 bits	17/18	144	136	112.5	225	720	5.0e-3

*Simulated with maximum likelihood decoding

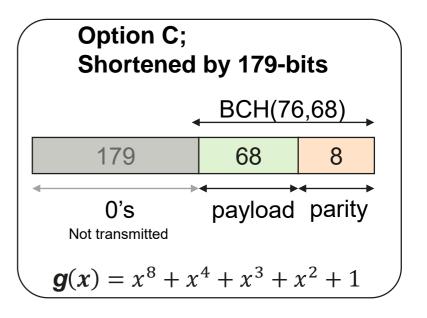
*Line bit error rate input to Soft Hamming Decoder to achieve <3.2e-4 before and <1e-13 after KP4 decoding for AWGN w/ sufficient interleaving 5/16

Inner Code Rate and Prior Ethernet Rates

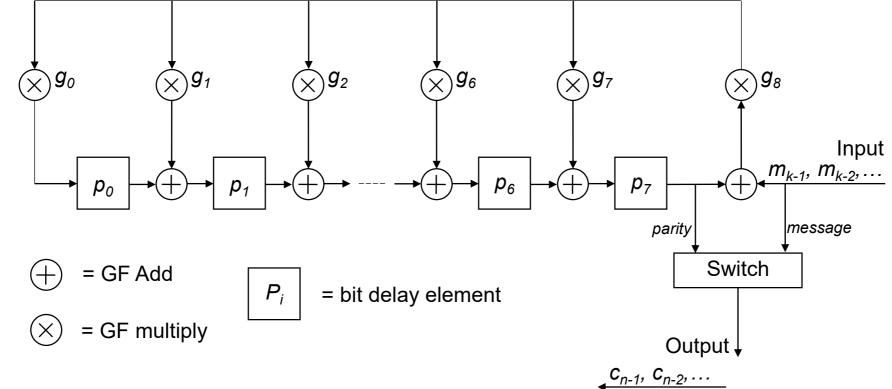

□ The inner code rate choice of 17/18 gives Baud rate an integer multiple of the 156.25MHz Xtal

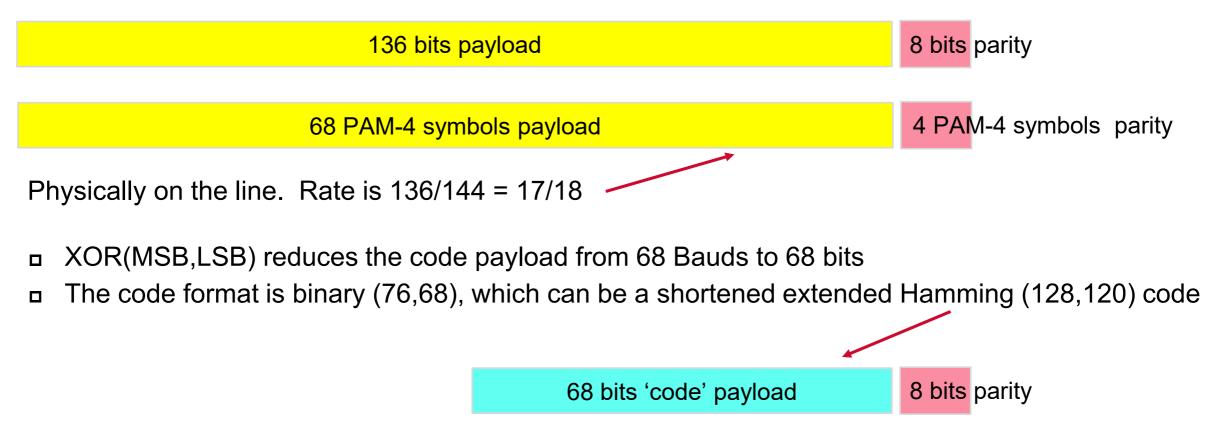

*Example Xtal frequency. Other frequencies like 312.5MHz are also popular in new Ethernet transceiver designs.

Inner Code Options B&C: BCH(144,136) and (76,68)


- □ In <u>he_3df_01_221005</u>, constructing a narrow-sense binary primitive BCH code with t = 1.
 - Shorten the m = 8 primitive BCH(255,247), by prefixing to the message bits a sequence of 0s.
 - E.g., we can use primitive polynomial $x^8 + x^4 + x^3 + x^2 + 1$ ("implicit + 1" notation 0x8E) to construct the code.
 - There are many other primitive polynomials with degree of 8: 0x95, 0xAF, 0xB1, 0xB2, 0xB4, 0xE1, 0xF3, ...
 - The zero prefix sequence is not transmitted and is only used to calculate the parity of the primitive code.

 \triangleright





Inner Code Option B: BCH(144,136) Encoder Functional Model

- For $g(x) = x^8 + x^4 + x^3 + x^2 + 1$ of BCH(144,136), the 9 coefficient are 100011101, MSB on the left.
- The parity calculation shall produce the same result as the shift register implementation below in the similar form as in 119.2.4.4 for RS encoder and 115.2.3.3, 115.2.4.3.2 for BCH encoder.
- The outputs of the delay elements are initialized to zero prior to the computation of the parity for a given message.

Inner Code **Option D**: 17/18 rate extended Hamming code using a code shortened from (128,120) to (76,68)

Decoding the shortened code points to the PAM-4 symbols to 'correct', which is unambiguous and essentially lossless compared to pointing to 'bits'

https://www.ieee802.org/3/df/public/22_10/22_1005/bliss_3df_01_220929.pdf

Inner Code **Option D**: 17/18 rate extended Hamming code using a code shortened from (128,120) to (76,68)

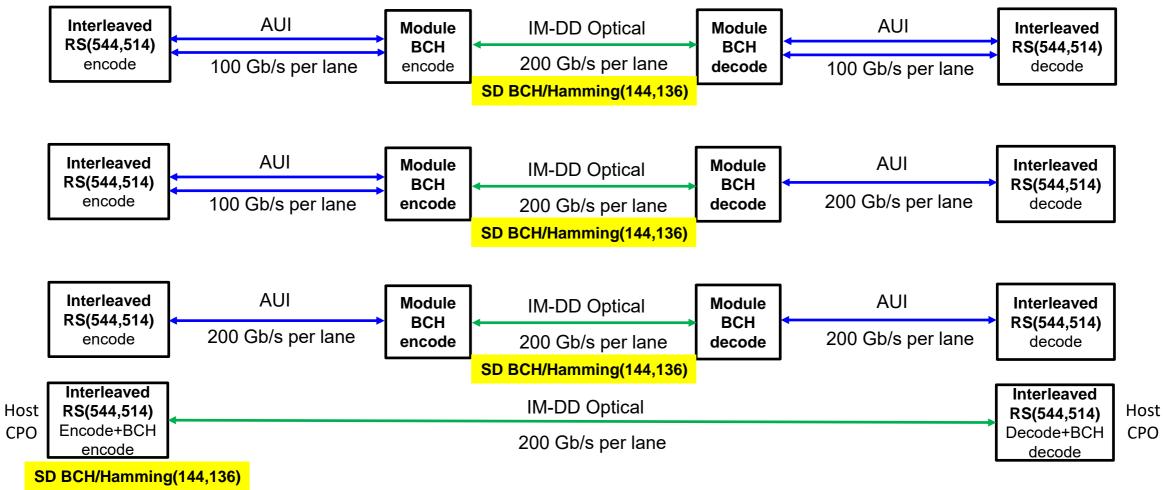
- □ The proposed code, like all systematic codes, is simple to 'shorten'.
- Message bits not used can conceptually be filled with zeros.
- Received bits not used likewise can be zeroed out.
- D Which makes clear the components of G and of H that can be deleted.
- □ The 52 right side columns of G and the bottom 52 rows of G are deleted.
- □ Similarly, the 52 right side columns of H are deleted.

			The 52 right side columns and 52 bottom rows of G are deleted						The 52 right side columns of H are deleted		
Full length code		Shortened code			Full length code			Shortened code			
m _{128x1} =	G _{128x120}	* u _{120x1}	m _{76x1} =	G _{76x68} *	u _{68x1}	s _{8x1} =	H _{8x128}	* n _{128x1}	s _{8x1} =	H _{8x76}	* n _{76x1}
	P ^T 8x120			P ^T 8x68							
				I _{68×68}		1.0	0.400	_	100	8x128	_
	I _{120x120}					8x1	8x128		8x1	0X120	
											1.1
-											

Shortening the (128,120) code to binary (76,68); G

Shortening the (128,120) code to binary (76,68); H

Proposal


- Adopt a soft-decoded 17/18 rate BCH/Hamming code as the inner code of a concatenated code for 200G IM-DD optical PMDs
 - > With effective (n,k) of (144,136)
 - > With outer code KP4 RS(544,514)
 - > Interleaving and multiplexing details can be performed in the optical PMD, with details TBD
- Benefit to the Task Force:
 - > Narrows down FEC discussion to accelerate choosing a suitable inner code and format
 - Allows for an end-to-end as well as segmented approach allowing KP4 terminate/regenerate mode if required

Future Work for 200G Optical

- Define inner code exactly
 - Code rate and code parameters fixed
 - > Codeword generating method: E.g., matrix of option D, or polynomial of option B, etc.
- Define overall format
 - Define Mapping / Distribution of PCS lanes to 200G lanes
 - > Define Interleaving in 200G lanes
- Support forward looking development, especially for next generation 200G AUI
 - > Pre-FEC BER targets for optical link for a range of future AUI performances
 - > Develop segment/link quality metrics to aid user monitoring

Attractive and Challenging Application Example

- Using RS(544,514) at host ASIC as outer code for both AUIs and optical with soft-decision BCH/Hamming rate 17/18 effective (144,136) for optical
 - > Lower area, power and latency for overall system
 - Consider breakout or next-generation 200/400GbE

Summary

- Adopt soft-decision BCH/Hamming at 225 Gbit/sec with the code rate of 17/18 as the inner concatenated code.
 - > BCH(144,136) as in slides #7-10 are two example codes to be considered
 - Target input BER of <4.5e-3 from optical PMD</p>
- □ RS(544,514) as the outer code to construct the concatenated code.
- Help the Task Force focus on 200 Gb/s per lane IM-DD optical and 200
 Gb/s AUI PMDs discussions.

Thanks!