200G/Lane AUI FEC Direction

IEEE P802.3df Task Force IEEE 802.3 November 2022

Mark Gustlin – Cisco Kent Lusted – Intel Xinyuan Wang – Huawei Adee Ran – Cisco

Supporters

Brian Welch – Cisco Mike Dudek – Marvell Rich Mellitz – Samtec Shawn Nicholl – AMD Gary Nicholl – Cisco Dave Ofelt – Juniper Jeff Slavick – Broadcom Mike Li – Intel Howard Heck – Intel Bill Simms - Nvidia Weigiang Cheng - China Mobile Liav Ben Artsi – Marvell Ali Ghiasi - Ghiasi Quantum

Ted Sprague – Infinera Xiang He – Huawei Hao Ren – Huawei Yu Xu – Huawei Peter Stassar – Huawei Phil Sun – Credo Eugene Opsasnick – Broadcom Kapil Shrikhande – Marvell Eric Maniloff – Ciena Matt Brown – Huawei Haojie Wang - China Mobile Adam Healey - Broadcom

Agenda

- A quick review many of the presentations that have preceded this and relate to the FEC choice for 200G/lane
- A proposal to choose RS(544,514,10) as the FEC for 200G/lane AUIs (C2M and C2C)

Review Previous Work - gustlin_3df_01a_220517

- These are from the 802.3df adopted logic architecture slides
- RS544 can operate as the FEC1/2/4

= End to End FEC

= AUI FEC for Segmented

= PMD FEC for Segmented

= Inner FEC for Concatenated

= Outer FEC for Concatenated

FEC1

FEC3

FEC5

Stack #2

FEC Locations for

Segmented option

MAC/RS

PMA

PMA

PCS3 FEC3

PMA

PMD

Medium

MDI

AUI

XS2

XS2

Stack #3

FEC Locations for

Concatenated option

MAC/RS

PMA

PMA

PMA

MDI

Medium

FEC5

AUI

PCS4

FEC

PMD

Review Previous Work - welch_3df_logic_220425

- Concept of two modes, end to end or segmented dependent on AUI loss
- The optical segment might be a concatenated FEC itself
- Each end determines its own operational mode (terminated or pass-through)

"End to Segmented" FEC

welch_3df_logic_220425.pdf

Review Previous Work - gustlin_3df_logic_220411

- Presentation proposed to adopt RS544 FEC on the large ASIC as soon as reasonable...
 - For the AUIs
 - Now might be the right time?
- Still some stuff to figure out: bit muxing vs. symbol muxing, 1.6Tb architecture etc.

200G/Lane AUI FEC Proposal

Review Previous Work - wang_3df_01_220215

This Presentation shows RS544 as the outer FEC code in a concatenated overall FEC scheme

FEC Scheme Example with Concatenated FEC Code

- Assuming 200 Gb/s per lane AUI has similar BER (~1E-5) and error behavior as 100 Gb/s per lane AUI, it will make FEC scheme simple, just doubling the bit rate.
- Assuming 200 Gb/s per lane optical link operates at ~2E-3, the inner code can help to lower this raw BER to match the far end outer decode RS(544,514) performance.

> This inner code has a short codeword, operating on a per-lane style to enable simple FEC scheme conversion.

wang_3df_01_220215.pdf

Review Previous Work - lusted_3df_01_220927

- This Presentation proposed two AUI specifications based on loss targets
- Dominant choice of the straw poll favors having both medium and higher loss options

Straw Poll #1

For the front panel pluggable use case, I am interested in 200 Gbps/lane AUI C2M specifications for:

- medium loss only (e.g. up to ~22 dB IL die-die per lusted_3df_01_220927)
- B. higher loss only (e.g. up to ~36 dB IL die-die per lusted_3df_01_220927)
- c. both medium and higher loss
- D. need more information

Review Previous Work - ran_3df_elec_01b_220921

- This Presentation shows with certain COM choices most channels can be supported with a DER ~ 1e-4
- Other shorter channels may operate at 1e-5

COM results at operating point

Implications

• DER0=1e-4 is close to the full RS544 correction capability

- We need to enable error correction for the electrical segment alone
- Operating with 1e-5 may be possible with lower loss channels in these cases it may be possible to oppass error correction
- Possible solution: Flexible segmented / concatenated architecture

ran_3df_elec_01b_220921.pdf

Review Previous Work - li_3df_01a_2

• This Presentation shows with certain COM choices a DER ~ 1e-5

Summary & Conclusions

COM and Link Simulation Result Summ 212.5Gbps PAI 4 (DER =10-5)							
Channel	COM EH	COM VEC	Simulation Eye Opening Height	Simulation VEC			
CH6	9.19 mV	11.405 dB	3.80 mV	14.32 dB			
CH7	10.16mV	10.648 dB	4.49 mV	13.15 dB			

 Preliminary COM and time-domain simulations with Intel/Amphenol latest C2M channels suggest good 212.5Gbps C2M TP1a performance/solution space with PAM4 modulation scheme.

Review Previous Work - rabinovich_3df_elec_01b_220921

• This Presentation shows with certain C2M channel choices with a DER ~ 1e-5/5e-5

200G PAM4 C2M Via Length Effect Study

Structures and COM Configurations

- Three Via Lengths
 ✓ 19 mil 67 mil 93 mil
- Two Breakouts
 - ✓ Parallel
 - ✓ Orthogonal
- •
- Two Filters
 - ✓ Butterworth
 - ✓ Raised Cosine (starts @ 42.5 GHz, ends @ 80 GHz)
- Two Equalization Strengths *:

Equalization	DER_0	SNR_TX	eta_0	Float. Taps
Less Aggressive	1.00E-05	32.5	2.05E-08	NO
More Aggressive	5.00E-05	34	2.05E-09	YES

Slides 17 and 18 - Mellitz_3df_elec_01_220621.pdf

Page 12

200G PAM4 C2M Via Length Effect Study

						rtho	ogona	al Breakout							
ase #	Via Length	C2M Configuration	Filter		DER_0	INF	TX	eta_0	Float. Taps	EH (mV)	VEC (dB)	COM (dB)	ICN	ERL (dB)	DER
1	19 mil	Less Aggressive	Butterwo	ort	1.00E-05	32	2.5	2.05E-08	NO	18.7	9.06	3.77	1.47	18.1	1.05E-
2	19 mil	More Aggressive	Butterwo	or	5.00E-05		4	2.05E-09	YES	25.7	5.59	6.47	1.47	18.6	6.70E-
3	19 mil	Less Aggressive	Raised Co	s a	1.00E-05	2	2.5	2.05E-08	NO	19.3	8.19	4.29	1.47	18.1	6.75E-
4	19 mil	More Aggressive	Raised Co	e e	5.00E-05		14	2.05E-09	YES	30.3	5.16	6.98	1.47	18.6	7.10E-
5	67 mil	Less Aggressive	Butterwa	h	1.00E-05		.5	2.05E-08	NO	9.2	12.79	2.26	2.04	17.5	8.27E-
6	67 mil	More Aggressive	Butterw	h.	5.00E-05		4	2.05E-09	YES	19.9	7.30	4.91	2.04	18.1	3.01E-
7	67 mil	Less Aggressive	Raised Co	ne	1.00E-05		5	2.05E-08	NO	15.8	9.78	3.40	2.04	17.5	2.11E-
8	67 mil	More Aggressive	Raised C	ne	5.00E-05		F.	2.05E-09	YES	24.1	5.99	6.05	2.04	18.1	5.35E-
9	93 mil	Less Aggressive	Butterw	th	1.00E-05		5	2.05E-08	NO	5.6	18.36	1.12	2.27	15.4	5.09E-
10	93 mil	More Aggressive	Butterw	th	5.00E-05			2.05E-09	YES	17.0	8.23	4.26	2.27	15.9	6.62E-
11	93 mil	Less Aggressive	Raised C	ine	1.00E-05	- 3	5	2.05E-08	NO	11.5	12.19	2.45	2.27	15.4	3.57E-
12	93 mil	More Aggressive	Raised C	ine	5.00E-05			2.05E-09	YES	19.9	6.65	5.43	2.27	15.9	1.15E-
						1.1									
			_			Pa	lel	Breakout	-				-		
ase #	Via Length	C2M Configuration	Filte		DER_0	Pa SN	lei I TX	Breakout eta_0	Float. Taps	EH (mV)	VEC (dB)	COM (dB)	ICN	ERL (dB)	DER
ase #	Via Length 19 mil	C2M Configuration Less Aggressive	Filte Butterw	th	DER_0 1.00E-05	Pa SN	iei TX	Breakout eta_0 2.05E-08	Float. Taps	EH (mV) 15.2	VEC (dB)	COM (dB) 3.22	ICN 1.79	ERL (dB) 18.3	DER 5.66E-
ase #	Via Length 19 mil 19 mil	C2M Configuration Less Aggressive More Aggressive	Filte Butterw Butterw	th th	DER_0 1.00E-05 5.00E-05	Pa SN	iei i TX	Breakout eta_0 2.05E-08 2.05E-09	Float. Taps NO YES	EH (mV) 15.2 25.8	VEC (dB) 10.18 6.23	COM (dB) 3.22 5.82	ICN 1.79 1.79	ERL (dB) 18.3 18.8	DER 5.66E- 3.06E-
ase # 1 2 3	Via Length 19 mil 19 mil 19 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive	Filte Butterw Butterw Raised C	th th ne	DER_0 1.00E-05 5.00E-05 1.00E-05	Pa SN	lel I TX 5	eta_0 2.05E-08 2.05E-09 2.05E-08	Float. Taps NO YES NO	EH (mV) 15.2 25.8 19.8	VEC (dB) 10.18 6.23 8.66	COM (dB) 3.22 5.82 4.00	ICN 1.79 1.79 1.79	ERL (dB) 18.3 18.8 18.3	DER 5.66E- 3.06E- 1.99E-
Case # 1 2 3 4	Via Length 19 mil 19 mil 19 mil 19 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive More Aggressive	Filte Butterw Butterw Raised C Raised C	th th ne ne	DER_0 1.00E-05 5.00E-05 1.00E-05 5.00E-05	Pa SN	lel I TX 5	Breakout eta_0 2.05E-08 2.05E-09 2.05E-08 2.05E-09	Float. Taps NO YES NO YES	EH (mV) 15,2 25,8 19,8 26,0	VEC (dB) 10.18 6.23 8.66 5.53	COM (dB) 3.22 5.82 4.00 6.54	ICN 1.79 1.79 1.79 1.79	ERL (dB) 18.3 18.8 18.3 18.3	DER 5.66E- 3.06E- 1.99E- 4.97E-
ase # 1 2 3 4 5	Via Length 19 mil 19 mil 19 mil 19 mil 67 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive More Aggressive Less Aggressive	Filte Butterw Butterw Raised C Raised C Butterw	th th ne h	DER_0 1.00E-05 5.00E-05 1.00E-05 1.00E-05	Pa	lel TX 5	Breakout eta_0 2.05E-08 2.05E-09 2.05E-09 2.05E-09 2.05E-08	Float. Taps NO YES NO YES NO	EH (mV) 15,2 25,8 19,8 26,0 10,1	VEC (dB) 10.18 6.23 8.66 5.53 13.27	COM (dB) 3.22 5.82 4.00 6.54 2.12	ICN 1.79 1.79 1.79 1.79 2.36	ERL (dB) 18.3 18.8 18.3 18.8 18.8 17.9	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E-
ase # 1 2 3 4 5 6	Via Length 19 mil 19 mil 19 mil 19 mil 67 mil 67 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive More Aggressive Less Aggressive More Aggressive	Filte Butterw Butterw Raised C Raised C Butterw Butterw	th th ne h	DER_0 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05	Pa	lel I TX 5 4	Breakout eta_0 2.05E-08 2.05E-09 2.05E-08 2.05E-09 2.05E-08 2.05E-09	Float. Taps NO YES NO YES NO YES	EH (mV) 15.2 25.8 19.8 26.0 10.1 20.6	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29	ICN 1.79 1.79 1.79 1.79 2.36 2.36	ERL (dB) 18.3 18.8 18.3 18.8 17.9 18.5	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E-
case # 1 2 3 4 5 6 7	Via Length 19 mil 19 mil 19 mil 19 mil 67 mil 67 mil 67 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive More Aggressive More Aggressive Less Aggressive	Filte Butterw Butterw Raised C Butterw Butterw Raised Co	th th ne h h	DER_0 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05	Pa	lel I TX 5 4 .5 4	Breakout eta_0 2.05E-08 2.05E-08 2.05E-09 2.05E-08 2.05E-09 2.05E-09 2.05E-09 2.05E-08 2.05E-08	Float. Taps NO YES NO YES NO YES NO	EH (mV) 15.2 25.8 19.8 26.0 10.1 20.6 16.2	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19 10.36	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29 3.14	ICN 1.79 1.79 1.79 1.79 2.36 2.36 2.36	ERL (dB) 18.3 18.8 18.3 18.8 17.9 18.5 17.9	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E- 1.12E-
ase # 1 2 3 4 5 6 7 8	Via Length 19 mil 19 mil 19 mil 19 mil 67 mil 67 mil 67 mil 67 mil	C2M Configuration Less Aggressive More Aggressive More Aggressive Less Aggressive More Aggressive Less Aggressive More Aggressive More Aggressive	Filte Butterw Butterw Raised C Butterw Butterw Raised C Raised C Raised C	th th ne h h	DER_0 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05	Pa	lel TX 5 4 2.5 4	Breakout eta_0 2.05E-08 2.05E-08 2.05E-09 2.05E-08 2.05E-09 2.05E-08 2.05E-08 2.05E-08 2.05E-08 2.05E-08 2.05E-08	Float. Taps NO YES NO YES NO YES NO YES	EH (mV) 15.2 25.8 19.8 26.0 10.1 20.6 16.2 23.4	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19 10.36 6.49	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29 3.14 5.58	ICN 1.79 1.79 1.79 2.36 2.36 2.36 2.36	ERL (dB) 18.3 18.8 18.3 18.8 17.9 18.5 17.9 18.5	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E- 1.12E- 7.34E-
ase # 1 2 3 4 5 6 7 8 9	Via Length 19 mil 19 mil 19 mil 19 mil 67 mil 67 mil 67 mil 67 mil 93 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive More Aggressive Less Aggressive Less Aggressive Less Aggressive Less Aggressive	Filte Butterw Butterw Raised C Butterw Butterw Raised CC Raised CC Butterwo	th th ne h h h e os e	DER_0 1.00E-05 5.00E-05 1.00E-05 1.00E-05 1.00E-05 5.00E-05 1.00E-05 1.00E-05	Pa	lel TX 5 4 5 4 4 2.5 4	eta_0 2.05E-08 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-08 2.05E-08 2.05E-09 2.05E-08 2.05E-09 2.05E-08 2.05E-08 2.05E-08 2.05E-08	Float. Taps NO YES NO YES NO YES NO YES NO	EH (mV) 15.2 25.8 19.8 26.0 10.1 20.6 16.2 23.4 7.9	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19 10.36 6.49 16.38	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29 3.14 5.58 1.43	ICN 1.79 1.79 1.79 2.36 2.36 2.36 2.36 2.36 2.62	ERL (dB) 18.3 18.8 18.3 18.8 17.9 18.5 17.9 18.5 17.9 18.5 15.0	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E- 1.12E- 7.34E- 1.81E-
ase # 1 2 3 4 5 6 7 8 9 10	Via Length 19 mil 19 mil 19 mil 67 mil 67 mil 67 mil 67 mil 93 mil 93 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive Less Aggressive More Aggressive More Aggressive More Aggressive More Aggressive More Aggressive More Aggressive	Filte Butterw Butterw Raised C Butterw Butterw Raised Co Butterw Butterw Butterw	th th ne h h b s e or	DER_0 1.00E-05 5.00E-05 1.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05 5.00E-05		lel TX 5 4 .5 4 .5 4 .5 4 .5 4	Breakout eta_0 2.05E-08 2.05E-09 2.05E-08 2.05E-09 2.05E-08 2.05E-08 2.05E-09 2.05E-09 2.05E-09	Float. Taps NO YES NO YES NO YES NO YES NO YES	EH (mV) 15,2 25,8 19,8 26,0 10,1 20,6 16,2 23,4 7,9 17,8	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19 10.36 6.49 16.38 9.19	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29 3.14 5.58 1.43 3.70	ICN 1.79 1.79 1.79 2.36 2.36 2.36 2.36 2.36 2.62 2.62	ERL (dB) 18.3 18.8 18.3 18.8 18.3 18.8 17.9 18.5 17.9 18.5 17.9 18.5 17.9 18.5 15.0 15.5	DER 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E- 1.12E- 7.34E- 1.81E- 1.73E-
ase # 1 2 3 4 5 6 7 8 9 10 11	Via Length 19 mil 19 mil 19 mil 67 mil 67 mil 67 mil 93 mil 93 mil 93 mil	C2M Configuration Less Aggressive More Aggressive Less Aggressive Less Aggressive More Aggressive Less Aggressive Less Aggressive Less Aggressive Less Aggressive Less Aggressive	Filte Butterw Butterw Raised C Butterw Raised Co Butterw Butterw Butterw Raised Co	th th ne h h e or or ort osin	DER_0 1.00E-05 5.00E-05 5.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 5.00E-05 1.00E-05 1.00E-05 1.00E-05	Pa SN 33	leii TX 5 4 2.5 4 2.5 4 2.5	Breakout eta_0 2.05E-08 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09 2.05E-09	Float. Taps NO YES NO YES NO YES NO YES NO YES NO	EH (mV) 15,2 25,8 19,8 26,0 10,1 20,6 16,2 23,4 7,9 17,8 13,6	VEC (dB) 10.18 6.23 8.66 5.53 13.27 8.19 10.36 6.49 16.38 9.19 12.20	COM (dB) 3.22 5.82 4.00 6.54 2.12 4.29 3.14 5.58 1.43 3.70 2.45	ICN 1.79 1.79 1.79 2.36 2.36 2.36 2.36 2.36 2.62 2.62 2.62	ERL (dB) 18.3 18.8 18.3 18.8 17.9 18.5 17.9 18.5 15.0 15.5 15.0	DEF 5.66E- 3.06E- 1.99E- 4.97E- 1.39E- 2.75E- 1.12E- 7.34E- 1.81E- 1.73E- 3.48E-

rabinovich_3df_elec_01b_220921.pdf

Review Previous Work -mellitz_3df_01_2207

This Presentation shows with certain C2C channel choices with a DER ~ 1e-5

COM 3.8beta example (w/ crosstall

Table 93A-1 parameters			2	I/O control			Table 93A–3 parameters			
Parameter	r Setting Units Information		Information	DIAGNOSTICS	DIAGNOSTICS 1		Parameter Setting			
f_b	106.25	GBd		DISPLAY_WINDOW	1	logical	package_tl_gamma0_a1_a2	[0 8.4e-4 1.1e-4]	2	
f_min	0.05	GHz		CSV_REPORT	1	logical	package_tl_tau	6.14E-03	11.	
Delta_f	0.01	GHz		RESULT_DIR	.\results\200G_C2C_{date}		package_Z_c	[87.5 87.5 ; 92.5 92.5]		
C_d	[0.4e-4 0.9e-4 1.1e-4; 0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]	SAVE_FIGURES	0	logical	· · · · · · · · · · · · · · · · · · ·			
L_s	[.13.15.14; .13.15.14] nH [TX RX]		[TX RX]	Port Order [1234] logica		logical	Table 92–12 parameters			
C_b	[.3e-4 .3e-4]	nF	[TX RX]	RUNTAG	R200_eval	-	Parameter Setting			
z_p select	[12]		[test cases to run]	COM_CONTRIBUTION	0	logical	board_tl_gamma0_a1_a2 [0 6.44084e-4 3.64			
z_p (TX)	[12 31; 1.8 1.8]	mm	[test cases]		operations.		board_tl_tau	0.00579	1.	
z_p (NEXT)	[12 29; 1.8 1.8]	mm	[test cases]	CC ass threshold	3	dB	board Z c	100		
z_p (FEXT)	[12 31; 1.8 1.8]	mm	[test cases]	L Pass threshold	10.5	dB	z_bp (TX)	40		
z_p (RX)	[12 29; 1.8 1.8]	mm	[test cases]	DER_0	1.00E-05		z_bp (NEXT)	40		
Ср	[0.5e-4 0.5e-4]	nF	[TX RX]	J.r.	3.29E-03	ns	z_bp (FEXT)	40	di Come	
RO	50	Ohm		FU.		logical	z bp (RX)	40		
R_d	[45 45]	Ohm	[TX RX]	Local Search	2	1	C_0	[0.2e-4]		
Av	0.408	V	1	SAVE_CONFIG2MAT	0	1	C_1	[0.1e-4]		
A_fe	0.408	V		TDR a	and ERL options	n I	Include PCB	0		
A_ne	0.608	V		TDR	1	logical		Floating Tap Control		
L	4			ERL	1	logical	N_bg	4	1.	
M	32	1		ERL_ONLY	0	logical	N_bf	3	1.000	
filter and Eq				TR_TDR	0.01	ns	N_f	60	UI s	
- f.r	0.75	+fb	1	N	3000		bmaxg	0.2	max DF	
c(0)	0.6	1.54	min	beta_x	0	18	B_float_RSS_MAX	0.2	1.000	
c(-1)	[-0.34:0.02:0]		[min:step:max]	rho x	0.618		N tail start	25	(UI)	
c(-2)	[0:0.02:0.2]		[min:step:max]	fixture delay time	[00]	[port1 port2]		ICN parameters		
c(-3)	[-0.1:0.02: 0]	1	[min:step:max]	TDR_W_TXPKG	0		f_v	0.676		
c(1)	[-0.1:0.02:0]		[min:step:max]	N bx	0	UI	ff	0.676		
Nb	12	UI		2 t	[45 50]	ohm	fn	0.676		
b max(1)	0.85	1				100 C 100 C	f 2	79.688		
b max(2N b)	0.3			Re	ceiver testing		A ft	0.600		
b min(1)	-0.85			RX CALIBRATION	0	logical	A nt	0.600		
b min(2N b)	-0.3	1		Sigma BBN step	5.00E-03	V			1	
g DC	[-20:1:0]	dB	[min:step:max]	1	Noise, jitter					
fz	42.5	GHz		sigma RJ	0.01	UI				
f p1	42.5	GHz		A DD	0.02	UI				
f p2	106.25	GHz		eta 0	4.10E-09	VA2/GHz				
@ DC HP	[-8:1:0]		[min:step:max]	SNR TX	34	dB				
f HP P7	1.0625	GHz		BLM	0.95					
param.RC Start	4250000000	HZ		A CWI	0.55	-				
naram RC end	79687500000	HZ								
Butterworth	0	114	logical							
Raised Cosine	1		logical							
THE REAL PROPERTY OF THE PROPE			The second se							

FOR TEST BOARD WIRED TO TEST CHIP ATTACH

COM results

TP0 TO TP5 EXAMPLE

Channel ERL

- ERL for $Z_t 45 \Omega$: 13.1 dB
- + ERL for ${\rm Z_t}$ 50 Ω : 12.2 dB
- Package 1 (12 mm)
 - COM : 4.34 dB
- Package 2 (31 mm)

9

• COM : 3.57 dB

IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

IEEE P802.3df 200 Gb/s, 400 Gb/s, 800 Gb/s, and 1.6 Tb/s Ethernet Task Force

mellitz_3df_01_2207.pdf

Review Previous Work - welch_3df_01a_221011

- This Presentation shows FEC options for the DR/FR PMDs at 200G/lane
- RS544 might be viable for these optical links
 - An added BCH code might not give you too much NCG, depending on various component BWs etc.

welch_3df_01a_221011.pdf

10

Review Previous Work - simms_3df_01_221005

- This Presentation shows an RS544 FEC options working for end-to-end FEC at 200G/lane
 - Assumes AUI at 1e-5 or better

8

SIMULATION RESULTS

*5: MSA FFE 225G curve extracted from 800G Pluggable Multi-Source Agreement White Paper 200g-per-lane-for-future-800g-and-16t-modules

simms_3df_01_221005.pdf

Proposal

- Adopt RS544 now as the FEC for the 200G/lane AUI
- Reasons to do this now:
 - Having a common RS(544,514,10) FEC strategy across 100G/Lane for all interfaces (AUIs and PMDs) and for the AUIs for 200G/Lane is a big benefit
 - Gives guidance to the industry for developing large ASICs
 - The FEC structures are quite important for power and area in these devices
 - RS544 FEC looks to be able to support the 200G/lane AUIs on one side of a link
 - When dedicating the gain just for the AUI
 - Fully evaluating the raw BER targets for optical and electrical links is a long pole, but giving a good target to the task force to coalesce around is valuable
 - We don't want a higher overhead FEC on the AUI anyhow, impact on NCG due to speed increases reaches diminishing returns

What More Needs to be Defined?

- Need to decide on the format of the RS544 on the AUI at 200G/lane
 - Bit muxing?
 - Up to N:1, where N depends on the rate and number of lanes
 - Might require precoding to reduce the burst error impacts
 - Simplest option
 - Symbol muxing?
 - Maintains burst error tolerance better
 - Slightly more complicated
 - Some other option?
 - Still being studied, leave for a future decision

What More Needs to be Defined? Cont..

- What is the FEC structure on the PMD
 - Possibly also RS544, and possibly with a BCH inner FEC
 - At least for the shorter PMDs (500m/2km)
 - Typically, with symbol muxing and or a level of permutation to spread out errors
 - This can be decided in the future, does not constrain the AUI FEC choice
 - If it is RS544 (with or without a BCH), then you can support the multiple modes as shown in a couple of slides

What this Presentation Proposes

- We are only proposing that we decide to use RS(544,514,10) as the FEC for 200G/lane AUIs
- Distribution is still TBD
- # of codewords is not part of this proposal, but:
 - Assume we would reuse 2CWs for 200/400GE
 - And 4CWs for 800GE
 - TBD for 1.6TbE

PCS Sublayer (Tx stack)
66b encode, 257b transcode, scrambling, AM insertion, distribution to FEC coding
FEC Encode RS(544,514,10) N codewords (2 or 4)
FEC Codeword Distribution

Enabling Multiple Modes

- We will likely have multiple AUI reach/losses
- We should support multiple FEC modes as shown below (if there is synergy with the PMD FEC)
- The RS544 FEC is either terminated or not depending on the correction needed for a given AUI Segmented FEC (3 segments), concatenated code on the PMD

AUI	PMA FEC- RS544 FEC- RS544 FEC- RS544 TMA FEC- RS544 TMA TMA TMA TMA TMA TMA TMA TMA TMA TMA
PMD FEG S44 INA	PMD FEC-BCH RS544 FEC-RS5444 FEC-RS5444 FEC
End to end FEC with a concatenation in the PMD	
PMA FEG S44 FEG S44 FE	PMD FEG 544 INA INA FEG 544 IC-BCH FEG 544 IC-BCH FEG 544 IC-BCH
Page 19 * Diagrams are conceptual and not compliant with adopted architecture	** A BCH FEC might or might not be required for the PMD span

Summary

- It is clear from the bulk of the presentations that we should be retaining RS544 as the FEC for 200G/lane AUIs
- Other details can be figured out soon
- Making this decision now will focus the task force
- This choice does not stop us from adopting a FEC scheme that might be different for copper cables (if needed)

Possible Straw Poll

- I would support adopting RS(544,514,10) as the FEC code for the 200G/lane AUIs (C2M and C2C)
 - Y
 - N
 - Need more information

Thanks!