FEC Performance for 200 Gb/s per Lane Optical PHY and Interoperating

Xiang He, Xinyuan Wang, Hao Ren

Huawei Technologies

Introduction: 200 Gb/s per Lane PHY

- Various objectives based on 200 Gb/s per lane technology have been adopted in P802.3df/dj for 800G/1.6TbE, including C2C/C2M AUIs, CR/KR electrical PMDs, IM-DD(PAM4) optical PMDs, and potential coherent (16QAM) PMDs.
- In <u>wang 3df 01b 220928</u>, FEC performance for 200 Gb/s per lane electrical PHYs was analyzed based on single-part link model with RS(544,514).
 - 4X codeword interleave has slightly worse FEC performance than 2X in some scenarios, due to the additional FLR penalty.
 - No significant FEC performance difference between 2:1 bit and symbol multiplexing at worst case.

Motivation

- To investigate FEC performance for 200 Gb/s per lane based **multi-part** link model, such as DR/FR PMDs.
 - Multi-part link: multiple analyzed instances (AUIs and optical PHY) between interoperating host devices.
 - Focusing on concatenated scheme: soft-decision BCH inner code protects optical PHY only.

https://www.ieee802.org/3/B400G/public/21_1028/B400G_overview_c_211028.pdf

FLR Evaluation for Different FEC Schemes

- End-to-end FEC requires both AUI and optical PMD to be within the spec as defined in 802.3bs.
 - AUI BER shall be capped at 1E-5 for each segment.
 - Optical PMD pre-FEC BER target is 2.4E-4 (random error).
- Segmented FEC with RS(544,514) for each segment could result an elevated FLR

- FEC error marking is required at each decode step for each FEC segment due to re-encode of data (<u>he_b400g_01_210426</u>, page 16).
- Considering 3 FEC segments, the final FLR could be at least 3x as specified in the objective if keeping post-FEC BER@1E-13.
- Concatenated FEC on multi-part link allows higher optical PMD without increasing FLR.
 - Error marking is only performed once in the host device when RS(544,514) is decoded (<u>he_b400g_01_210426</u>, page 16).
 - If AUI BER is kept at 1E-5, the pre-FEC BER for optical PMD can be ~ 3E-3.
 - If pre-FEC BER for optical PMD is 2.4E-3, 5E-5 AUI BER (each AUI segment) can be tolerated.

Assumptions for Multi-Part Link FEC Performance

	MAC					
	RS					
	MII					
	PCS4					
	FEC4					
	PMA					
	AUI					
PMA						
FEC5						
	PMD					
	MDI					
	Medium					

- FEC Scheme: Concatenated.
- Outer code: RS(544,514)
 - 4 codewords interleave
 - Both 802.3df D1.0 PCS (32 lanes) and 4-way RS interleave (8 lanes) are considered.
 - Bit or symbol multiplexing in PMA to form 200 Gb/s per physical lane from 2 PMA lanes.
- Inner code:
 - BCH(144,136), soft-decision decode as in page 6-7 of <u>he 3df 01a 220308</u>.
- AUIs: burst error model with 1-tap DFE introduced error propagation.
 - a = 0.5, 0.6 and 0.75 are analyzed as they are the worst cases.
 - Precoding on for $a \ge 0.6$.
- Optical PHY: Random error model, same as 50 and 100 Gb/s per lane in 200/400GbE.

Mathematical Calculation for FEC Performance in Multi-Part Link

*Figure for illustration only, not to show the actual ratio.

Theoretical Analysis of Concatenated Code Performance (Green circle in page 6)

Assumptions: Outer code: 4-way interleaved RS(544,514); Inner code: BCH(144,136).

- Separate the $4 \times RS(544,514)$ codewords to 32 groups of $5 \times BCH(144,136)$ codewords.
 - Each group of 5x inner BCH codewords consists of 68×10 -bits RS symbols.
 - Errors in each group of BCH codewords are independent from other groups.
 - Errors in each group are not random because of the non-Gaussian error distribution of BCH decoder output.
- Use $P(E_i)$ as the probability of a group of 5× BCH codewords containing E_i number of errors. We can express the uncorrectable codeword ratio (UCR) of the outer RS code as below:

UCR caused by inner BCH =
$$\sum_{\substack{0 \le E_i \le 68 \\ 15 < \sum_{i=1}^{32} E_i \le 544}} \prod_{i=1}^{32} P(E_i)$$
 where $0 \le E_i \le 68$

• $P(E_i)$ can be obtained by simulation on a large number (>1E+9) of BCH codewords in a short period of time.

Theoretical Analysis of Concatenated Code Performance (Including AUI Burst Errors)

- When burst errors on AUIs are included, the previous model can be extended to larger blocks based on the interleaving scheme.
 - Assuming $4 \times RS(544,514)$ codewords interleaved to 4^*n lanes (32 or 8).
 - Assuming inner BCH encode is performed on 200G/lane data streams.
 - The minimum independent data group would be based on the 4 inner codeword streams (800GbE).
 - Errors in each group are not random because of the non-Gaussian error distribution of BCH decoder output **AND** AUI bursts.
 - Errors in each group are independent from other groups.
 - The formula can be re-written as below:

UCR =
$$\sum_{\substack{0 \le E_i \le 136 \\ 15 < \sum_{i=1}^{4} E_i \le 544}} \prod_{i=1}^{4} P(E_i)$$
 where $0 \le E_i \le 136$

• $P(E_i)$ can then be obtained by simulation on a large number of independent data groups.

Verification of Theoretical Analysis

- Monte Carlo simulation results show excellent match to the calculated results.
- Time required to evaluate concatenated code with burst errors on AUI can be significantly reduced.

* Calculated based on model in previous pages.

+ Monte Carlo simulation based on the overall concatenated code.

Concatenated Code Performance: P802.3df PCS vs 4xRS Interleave

• Simulation PCS/PMA setup:

	# of PCS Lanes	PCS to PMA lane muxing	100G/lane to 200G/lane muxing			
P802.3df D1.0 BM	32	32:8 bit mux	8:4 bit mux			
P802.3df D1.0 SM	32	32:8 symbol mux	8:4 symbol mux			
4xRS BM	8	8:8 symbol streams	8:4 bit mux			
4xRS SM	8	8:8 symbol streams	8:4 symbol mux			

- Two sets of comparisons were performed.
 - Sweeping the optical PMD SNR (random errors), with fixed AUI BER with different burst levels;
 - Sweeping the AUI SNR with different burst levels, with fixed optical PMD SNR/BER (random errors).
- 4x RS interleaving with 8 lanes has better performance in terms of AUI burst tolerance in the right two figures.

Concatenated Code Performance: Bit Mux vs Symbol Mux

- To compare the performance between bit mux and symbol mux for each PCS/PMA setup, the same sets of data were plotted differently.
- 4 RS codewords interleaving could well cover 4E-5 total AUI BER with bursts.
 - Not much difference can be seen between bit mux and symbol mux if total AUI BER is fixed at 4E-5.
- Using 8 PCS lanes could allow more errors on the AUI.
 - Symbol mux could help for 32 PCS lanes muxing to 8 PMA lanes.
 - There is no clear advantage for symbol mux if 8 PCS lane is used and the muxing ratio is 2:1.

FEC Performance Results to Meet BER/FLR Objective

• The required SNR and DER at the slicer input, and the corresponding BER values at input of FEC decode to meet FLRs equivalent (6.2E-11) to that of a BER of 1E-13 are:

	AUI (Fixed total BER)		Optical PMD		AUI (Total BER)		Optical PMD (Fixed SNR)					
	SNR	DER	BER*	SNR	DER	BER	SNR	DER	BER*	SNR	DER	BER
а	a P802.3df D1.0, 32:8 bit mux + 8:4 bit mux						P802.3df D1.0, 32:8 bit mux + 8:4 bit mux					
0.5				15.405	6.31E-03	3.16E-03	18.28	1.83E-04	1.83E-04			
0.6**	19.12	4.0E-5	4.0E-5	15.425	6.20E-03	3.10E-03	18.34	1.65E-04	1.65E-04	15.70	4.8E-3	2.4E-3
0.75**				15.415	6.26E-03	3.13E-03	18.31	1.74E-04	1.74E-04			
а	a P802.3df D1.0, 32:8 symbol mux + 8:4 symbol mux					P802.3df D1.0, 32:8 symbol mux + 8:4 symbol mux						
0.5			4.0E-5 4.0E-5	15.405	6.31E-03	3.16E-03	17.97	3.00E-04	3.00E-04	15.70	4.8E-3	2.4E-3
0.6**	19.12	4.0E-5		15.42	6.23E-03	3.12E-03	18.12	2.37E-04	2.37E-04			
0.75**				15.45	6.06E-03	3.03E-03	18.19	2.12E-04	2.12E-04			
a 4xRS, 8:8 + 8:4 bit mux					4xRS, 8:8 + 8:4 bit mux							
0.5				15.38	6.45E-03	3.23E-03	18.00	2.86E-04	2.86E-04			
0.6**	19.12	19.12 4.0E-5 4.0E-5	15.39	6.40E-03	3.20E-03	18.15	2.26E-04	2.26E-04	15.70	4.8E-3	2.4E-3	
0.75**			15.405	6.31E-03	3.16E-03	18.19	2.12E-04	2.12E-04				
a 4xRS, 8:8 + 8:4 symbol mux						4xRS, 8:8 + 8:4 symbol mux						
0.5			15.420	6.23E-03	3.12E-03	17.95	3.09E-04	3.09E-04				
0.6**	19.12	4.0E-5	4.0E-5	15.425	6.20E-03	3.10E-03	18.10	2.45E-04	2.45E-04	15.70	4.8E-3	2.4E-3
0.75**				15.44	6.12E-03	3.06E-03	18.20	2.08E-04	2.08E-04			

* These values are the BER including the additional errors due to the bursts and effect of precoding. The values have been multiplied by 2.

** Precoding is turned on for a = 0.6 and 0.75.

- Mathematical model to evaluate the performance of concatenated code is introduced.
- The PCS/PMA multiplexing scheme will influence the concatenated FEC capability for multipart link with burst errors.
 - 4× codewords interleave can provide excellent burst tolerance for AUI.
 - Symbol mux outperforms bit mux if there are 32 PCS lanes.
 - No significant FEC performance difference between 2:1 bit and symbol multiplexing for 800 GbE with 8 PCS lanes and 1.6 TbE with 16 PCS lanes.
 - More work is underway for 200G/lane AUIs.

Acknowledgement

- We would like to gratefully acknowledge the following individuals for developing the mathematical model for concatenated code.
 - Prof. Yung-Hsiang S. Han, University of Electronic Science and Technology of China
 - Nianqi Tang, Huawei Technologies

Thank You!

