Baseline specifications for optical PMDs based on 200G/lane for 500m and 2km

Guangcan Mi, Ruoxu Wang Huawei Technologies Co. Ltd

Introduction

- The task force has finished the 1st Task Force review of P802.3df D1.0, which defines Optical PMDs based on 100G/lane optics.
- The hot issue of 200G/lane optics has been on the choice of technical solution for 10km/40km applications.
- However, the first deployed 200G/lane optics is likely to be targeting applications ≤2km, considering the technical difficulties in longer reach and the large number of shipments in this application space. So far, only a few contributions have been proposed, i.e. welch_3df_01b_220602, welch_3df_01a_221011, ingham_3df_01_221011.
- This contribution joins the discussion on baselines of 200G/lane optical PMDs for applications up to 2km.

Related Objectives								
DRx(500m)	DRx-2	FR4						
400Gb/s over 2 pairs								
800Gb/s over 4pairs	800Gb/s over 4pair	800Gb/s over 4λs						
1.6Tb/s over 8pairs	1.6Tb/s over 8pairs							

Fundamental Specs of the Optical Channel

	800G-DR4	800G-DR4-2	800G-FR4	
Assumed Wavelength Plan	1304.5-1317.5	1304.5-1317.5	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	
power budget (dB)				
channel IL(dB)	3	4	4	Table 124-8. Table 151-9
max discrete reflectance (dB)	-45	-35	-35	
allocation for penalties (dB)				
max positive dispersion (ps/nm)	0.8	3.2	6.6	
min negative dispersion (ps/nm)	-0.93	-3.7	-11.7	☐
DGD_max (ps)	1.14	2.28	2.28	
optical return loss(min) (dB)	37	25	25	

$DGD_max = PMD$	<u>_max</u> * sqrt(Lkm) *	S
-----------------	---------------------------	---

	PMD_Q	PMD_max	S	L(km)	DGD_max (ps)
100GBASE-FR 400GBASE-FR4	0.2	0. 43	3.75	2	2.3
800G-DR4	0.2	0.45	3.75	0.5	1.14
800G-DR4-2 800G FR4	0.2	0. 43	3. 75	2	2. 28

Same as in P802.3df D1.0 for 400GBASE-DR4-2

MPI penalty – 500m application

For DR (500m) applications, MPI penalty 0.1dB

I OTALIZACION ASSUNCE ALIGN	.u															
				N=							ER	dER	1/1-dER	inner/ou	uter OMA	
Baseline BER	average phase=			4							3.5	0.447	1.8073	0.33	1	
4.9E-03	3.141941689															
	PMD											PMD				
	R1	R 2	R 3	R 4	R 5	R 6	R7	R 8	R 9	R 10	R 11	R 12				
	Rpmd	RconF	RconG	RconG	RconH	RconK	RconK	RconH	RconG	RconG	RconF	Rpmd		N value	used to	rat
Reflection level inputs->	-26	-45	-55	-55	-55	-55	-45	-45	-55	-55	-45	-26		4		
	phase between	phase between	phase b	phase b	phase b	phase betw	phase bet	phase be	phase b	etween						
	int1-int2	int2-int3	int3-int4	int4-int5	int5-int6	int6-int7	int7-int8	int8-int9	int9-int1	int10-in	int11-in	t12				

MPI penalty – 2km application

Random phase between refle	ctors, random	selection of mo	dulatio	on leve	ls										
Polarization assumed align	ed			PAM-N									1		
_				N=							ER	dER	1/1-dEF	inner/o	uter OM/
Baseline BER	average phase=			4							3.5	0.447	1.8073	0.33	1
2.0E-03	3.106680048														
	PMD											PMD			
	R1	R 2	R 3	R 4	R 5	R 6	R7	R 8	R 9	R 10	R 11	R 12			
	Rpmd	RconF	RconG	RconG	RconH	RconK	RconK	RconH	RconG	RconG	RconF	Rpmd		N value	e used to
Reflection level inputs->	-26	-35	-55	-55	-55	-55	-35	-35	-55	-55	-35	-26		4	
	phase between	phase between	phase b	phase b	phase b	phase betw	ephase be	t phase be	e phase b	etween					
	int1-int2	int2-int3	int3-int4	int4-int5	int5-int6	int6-int7	int7-int8	int8-int9	int9-int1	(int10-ir	int11-in	t12			

Random phase between reflect	ctors, random	selection of mo	dulatio	n leve	els										
Polarization assumed aligne	ed			PAM-N									1		
				N=							ER	dER	1/1-dEF	inner/o	outer OM/
Baseline BER	average phase=			4							3.5	0.447	1.8073	0.33	1
4.9E-03	3.118309958														
	PMD											PMD			
	R 1	R 2	R 3	R 4	R 5	R 6	R7	R 8	R 9	R 10	R 11	R 12			
	Rpmd	RconF	RconG	RconG	RconH	RconK	RconK	RconH	RconG	RconG	RconF	Rpmd		N valu	e used to
Reflection level inputs->	-26	-35	-55	-55	-55	-55	-35	-35	-55	-55	-35	-26		4	
	phase between	phase between	phase b	phase b	phase b	phase betw	phase be	hphase be	phase b	etween					
	int1-int2	int2-int3	int3-int4	int4-int5	int5-int6	int6-int7	int7-int8	int8-int9	int9-int1	int10-in	int11-in	t12			

For 2km applications(DR-2 & FR) , MPI penalty 0.3dB

DGD penalty

kuschnerov_3df_01b_221012

- For DR (500m) applications the estimated DGD penalty is well below 0.2dB, even with limited component bandwidth and FFE only at Rx side
- In 2km applications the influence of system impairments and the benefits of strengthened Rx DSP algorithm starts to show.

DGD	1.14ps (500m)	2.28ps (2km)
Rx Sensitivity Penalty	0.2dB	0.4dB

Proposed Link Budget of the Fiber Link

	800G-DR4	800G-DR4-2	800G-FR4
		0 4	
power budget (dB)	6.7	8.1	8.4
channel IL (dB)	3	4	4
max discrete reflectance (dB)	-45	-35	-35
allocation for penalties (dB)	3.7	4.1	4.4
max positive dispersion (ps/nm)	0.8	3.2	6.6
min negative dispersion (ps/nm)	-0.93	-3.7	-11.7
DGD_max (ps)	1.14	2.28	2.28
optical return loss(min) (dB)	37	25	25
MPI Penalty (dB)	0.1	0.3	0.3
DGD Penalty (dB)	0.2	0.4	0.4
TDECQ max (dB)	3.4	3.4	3.7

Revisit the experimental result

- As stated in <u>kuschnerov_3df_01b_221012</u>, with FEC limit @4.85e-3, with a strengthened algorithm, FFE+MLSE for the data
 - ~-8dBm OMA Rx sensitivity
 - Leaves about \sim 3dB for a Rx sensitivity of -5dBm
- Same applies to assuming FEC limit @2e-3, with a strengthened Rx algorithm, FFE+MLSE for the data
 - ~-7.3dBm OMA
 - Leaves >3dB for a Rx Sensitivity of -4dBm
- The performance can still be improved as the 200G/lane technology evolves
 - Current data were acquired with bandwidth-limited components
 - Room to improve Rx Noise factors

Proposed Transmitter Baseline

		800G-DR4	800G-DR4-2	800G-FR4		
D	Description		Value	•	Unit	
Signaling R	ate, each lane(range)		TBD		GBd	
Modu	ulation Format		PAM4		-	
Lane Wavelength(Range)		1304.5-1317.5	1304.5-1317.5	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	nm	
Average Launcl	n Power, each lane(max)	4	4	4	dBm	
Average Launch	n Power, each lane(m,in)	-2.9	-2.8	-2.8	dBm	
Transmitte	er OMA_outer max	4.2	4.2	4.2	dB	
	TDECQ<1.4dB	-0.8	0.2	0.2	dBm	
Transmitter OMA _{outer min}	1.4dB≤TDECQ≤TDECQ_max	-2.2+TDECQ	-1.5+TDECQ	-2.8 d 4.2 0.2 d -1.2+TDECQ d 3.7 2	dBm	
TE	DECQ(max)	3.4	3.4	3.7		
	TECQ	same as TDECQ				
TD	ECQ-TECQ	TBD	TBD	TBD	dB	
Average launch power of	f OFF transmitter, each lane(max)	-15	-15	-16	dBm	
Extione	ction Ratio (min)	3.5	3.5	3.5	dB	
Transmit	ter Transition time	TBD	TBD	TBD	Ps	
over/ur	nder-shoot(max)	TBD	TBD	TBD	%	
R	RIN _x OMA ^a		-139	-139	dB/Hz	
Optical Retur	rn loss tolerance(max)	21.4	17.1	17.1	dB	
Transmitte	er reflectance(max)	-26	-26	-26	dB	
^a : x refers to the value of	Optical return loss tolerance(max)	of each column.				

Remained the same as 100G/lane, friendly to implementations using SiP-based Transmitter and shared laser source, for low cost.

Proposed Receiver Baseline

		800G-DR4	800G-DR4-2	800G-FR4			
E	Description		Value		Unit		
Signaling R	ate, each lane(range)	TBD					
Modu	ulation Format		PAM4	-	-		
Lane Wa	welength(Range)	1304.5-1317.5	1304.5-1317.5	1264.5 to 1277.5 1284.5 to 1297.5 1304.5 to 1317.5 1324.5 to 1337.5	nm		
Damage t	hreshold, each lane	5	5	5	dB		
Average receive Power, each lane(max)		4	4	4	dBm		
Average receiv	e Power, each lane(min)	-6	-7.1	-7.2	dBm		
Receiver	r OMA_outer max	4.2	4.2	3.7	dB		
Receiver	reflectance(max)	-26	-26	-26	dB		
Deciover Sensitivity	TECQ<1.4dB	-4.1	-4.5	-4.5	dBm		
OMA _{outer} , each lane(max)	1.4dB≤TECQ≤TECQ_max	-5.5+TECQ	-5.9+TECQ	-5.9+TECQ	dBm		
Stressed receiver sensit	ivity (OMA _{outer}), each lane(max)	TBD	TBD TBD TBD		dBm		
Conditions of stresse	ed receiver sensitivity(SECQ)	3.4	3.4	3.7	dB		

^a: x refers to the value of Optical return loss tolerance(max) of each column.

Summary

- A set of link budgets for optical PMDs based on 200G-PMA4 technology for up to 2km applications was proposed.
- The transmitter and receiver baselines were proposed, bearing the awareness of
 - > DR(500m) application will continue benefit from the established SiP ecosystem, i.e. low cost and vast deployment.
 - > 2km FR4 application, using CWDM, is subject to non-negligible CD penalty, leading to a different TDECQ max value, unlike the days of 100G/lane.
 - > Final numbers for OMA_outer may still need to be revisited, pending the decision on FEC and FEC limit
- From the current simulation and experiment result an advanced Rx algorithm is most likely required to close the link
 - $\geq\,$ With Soft decision FEC , $\,$ BCJR can be used for such purpose
 - > Reference receiver for the TDECQ needs to be optimized for this change.
 - > Further investigation on the definition of such reference receiver to facilitate interoperability is needed.

Thank you.

把数字世界带入每个人、每个家庭、 每个组织,构建万物互联的智能世界。

Bring digital to every person, home and organization for a fully connected, intelligent world.

