Symbol-muxing PMA for $200 \mathrm{~Gb} / \mathrm{s}$ per lane signaling
 Towards a baseline proposal
 Adee Ran, Cisco

Supporters

- Will Bliss, Broadcom
- Vasu Parthasarathy, Broadcom
- Cathy Liu, Broadcom

Background

- P802.3df has adopted PCS and PMAs for $8 \times 100 \mathrm{G}$ PHYs
- PCS with 32 logical lanes and 4 FEC engines
- 4:1 bit muxing ($32: 8$ lanes) in the PMA
- As next steps (possibly in P802.3dj) we should define 200G per lane AUIs: 800GAUI-4, 400GAUI-2 and 200GAUI-1
- There is a preference to keep the same PCSs and the KP-FEC
- This means the PMA muxing ratio will be 8:1
- Analysis of FEC performance with correlated errors shows symbol muxing has a significant advantage
- 8:1 bit muxing causes unacceptable degradation
- See ran 3df 012211

Goals of this presentation

- Describe a symbol-muxing PMA which will:
- Leverage the existing sublayer architecture
- Provide good FEC performance with correlated errors
- Enable simple implementation and interoperability in various use cases
... towards a future baseline proposal

Symbol muxing at $200 \mathrm{~Gb} / \mathrm{s}$ per lane

- A proposal should include support for all interfaces with $200 \mathrm{~Gb} / \mathrm{s}$ per lane signaling (PMAs connected to either AUIs or PMDs).
- The following slides focus on the PMAs required for 800GBASE-R PHYs.
- 200G and 400G PHY rates are expected to have similar PMAs with the appropriate changes (different number of lanes).
- 1.6T architecture has not been adopted yet, so it is not addressed in this presentation. It could use a similar approach.

Basic concepts for 800GBASE-R

- Keep the same PCS (32 PCS lanes, 4 codewords)
- Define a new PMA with symbol-muxing functionality
- 32:4 for a PMA co-located with an 800GBASE-R PCS or a DTE 800GXS
- 8:4 for 800G "gearboxes"
- 4:32 (for PHY 800GXS) and 4:8 - essentially the same, Tx and Rx directions swapped
- 4:4 for 800G retimers
- For the 32:4 PMA, both sides are symbol-muxed
- Symbol muxing requires alignment, but implementation is straightforward
- For the 8:4 PMA, the " 8 " side is bit muxed, while the " 4 " side is symbol muxed
- Conversion requires some "protocol-aware" logic, but is relatively simple
- Gearboxes typically exist in a transition phase, lower volume

PMA(32:4) functional block diagram

A PMA(4:32) is identical to a PMA(32:4) placed backwards (i.e., service interface has 4 lanes and interface below has 32 lanes)

800GBASE-R symbol-muxing PMA(32:4): Functions in the transmit direction

- Lock on AMs
- Identifying each of the 32 PCS lanes
- Deskew

The operations marked in orange are intended to
match the PCS specification, but may be
implemented differently as part of a co-located PCS.
The text in the standard can make a note of that.

- May be limited to groups of lanes that go to the same physical lane
- Extract 10-bit symbols from each lane
- Symbol-wise mux to 4 lanes
- Specific lane grouping (symbols from all codewords on each lane)
- Apply a checkerboard pattern (undoing the PCS alternating symbols)
- Send to the next sublayer (AUI/PMD)

800GBASE-R symbol-muxing PMA(32:4): Functions in the receive direction

- Receive and decode PAM4 symbols
- Lock on AM groups
- Identify each of the 4 PCS lane groups

The operations marked in orange are intended to match the PCS specification, but may be
implemented differently as part of a co-located PCS.
The text in the standard can make a note of that.

- Deskew
- Extract 10-bit symbols from each lane
- Symbol-wise demux to 32 lanes
- Apply a checkerboard pattern
- Send to the PCS

Proposed lane muxing rules in the transmit direction (800GBASE-R)

PMA lane	PCS lane source (after undoing the checkerboard pattern)									
	PCS symbol $8 n$	PCS symbol $8 n+1$	PCS symbol $8 n+2$	PCS symbol $8 n+3$	PCS symbol $8 n+4$	PCS symbol $8 n+5$	PCS symbol $8 n+6$	PCS symbol $8 n+7$		
	0	1	16	17	8	9	24	25		
1	2	3	18	19	10	11	26	27		
2	4	5	20	21	12	13	28	29		
	6	7	22	23	14	15	30	31		

The 10 bits of each symbol are encoded into five PAM4 symbols, encoded as specified in 120.5.7.1:

- The first transmitted PAM4 symbol is the result of encoding \{b0, b1\}
- The fifth transmitted PAM4 symbol is the result of encoding $\{b 8, b 9\}$

Notes

- Undoing the checkerboard pattern (or equivalently, re-applying it) means that the next group of 32 symbols swaps every symbol pair ($2 n+1$ and $2 n$).
- This creates a consistent symbol order on each physical lane, as illustrated in the next slide.
- In the receive direction, functionally, the checkerboard pattern is restored.
- A co-located PCS/PMA implementation can bypass the checkerboard pattern in both sublayers.
- A specific PCS lane grouping and order on each PMA lane is suggested.
- Flexibility seems to have no benefit here; leaving the grouping unspecified will unnecessarily complicate receiver design and verification.
- If the PMA is not co-located with a PCS, the AM lock and deskew function provides the required information to apply the specified muxing.
- PMA lanes may be re-ordered, and the receiving PMA has to identify them using the AM groups.
- The PAM4 patterns for the symbol-muxed AM groups have good properties (see backup).

32:4 symbol muxing illustrated

Proposed lane muxing rules in the transmit direction (400GBASE-R and 200GBASE-R)

400GBASE-R (16 PCS lanes)

PMA lane	PCS lane source (after undoing the checkerboard pattern)								
	PCS symbol $8 n$	PCS symbol $8 n+1$	PCS symbol $8 n+2$	PCS symbol $8 n+3$	PCS symbol $8 n+4$	PCS symbol $8 n+5$	PCS symbol $8 n+6$	PCS symbol $8 n+7$	
0	0	1	4	5	8	9	12	13	
1	2	3	6	7	10	11	14	15	

200GBASE-R (8 PCS lanes)

PMA lane	PCS lane source (after undoing the checkerboard pattern)								
	PCS								
	symbol								
	$8 n$	$8 n+1$	$8 n+2$	$8 n+3$	$8 n+4$	$8 n+5$	$8 n+6$	$8 n+7$	
	0	0	2	3	4	5	7		

PMA(8:4) block diagram

A PMA(4:8) is identical to a PMA(8:4) placed backwards (i.e., service interface has 4 lanes and interface below has 8 lanes)

Gearbox PMA(8:4) and PMA(4:8)

- Functionality:
- Extract and decode PAM4 symbols

Only the operations marked in orange are new and "protocol-aware". Their implementation is simple.

- On the " 8 " side:
- Bitwise-demux the input stream
- Lock on AMs
- Recover the 32 PCS lanes and find symbol boundaries
- Deskew groups of input lanes
- On the " 4 " side:
- Lock on AM groups in the input stream
- Recover the 32 PCS lanes and find symbol boundaries
- Symbol-wise demux
- Apply checkerboard pattern to the symbols on the PCS Ianes (in both directions)
- Data coming from the " 8 " side already has a checkerboard pattern, so this operation undoes it when sending to the " 4 " side
- Bitwise mux on the " 8 " side, symbol-wise mux on the " 4 " side
- PAM4 encode and send

Non-gearbox PMA(4:4)

- In a retimer that has the same width on both interfaces, the PMA is not required to know anything about FEC symbols.
- In these cases, the PMA is specified as a lane-by-lane "CDR".
- Forwarding PAM4 symbols between input and output interfaces
- No need for any inter-lane or symbol-oriented logic (AM, deskew, etc.)
- Re-ordering of physical lanes is allowed
- Changing bit/symbol order within each lane is not allowed

Use cases, symbol muxed PMA(n:m)

PMA description		Service interface (n)		4 lanes, symbol muxed
Below an 800GBASE-R PCS or DTE 800GXS	32 lanes (bits)	2 lanes, symbol muxed		
Below a 400GBASE-R PCS or DTE 400GXS	16 lanes (bits)	1 lane, symbol muxed		
Below a 200GBASE-R PCS or DTE 200GXS	8 lanes (bits)	4 lanes, symbol muxed		
800GAUI-8 to 800GAUI-4 gearbox (or an equivalent optical module)	8 lanes, bit muxed	2 lanes, symbol muxed		
400GAUI-n to 400GAUI-2 gearbox, n>2	n lanes, bit muxed	1 lane, symbol muxed		
200GAUI-n to 200GAUI-1 gearbox, n>1	n lanes, bit muxed	32 lanes (bits)		
Above a PHY 800GXS	4 lanes, symbol muxed	16 lanes (bits)		
Above a PHY 400GXS	2 lanes, symbol muxed	8 lanes (bits)		
Above a PHY 200GXS	1 lane, symbol muxed			

Transition from $100 \mathrm{~Gb} / \mathrm{s}$ to $200 \mathrm{~Gb} / \mathrm{s}$ per lane

End goal: 200G/lane electrical and optical

Host ASIC A
Module A

- Hosts A and B use RS544 FEC with symbol muxing in both directions (mandatory for 200G/lane)
- Modules A and B may add another FEC (no need for symbol alignment or deskew logic), or terminate and regenerate the RS FEC
- Symbol muxing persists over all segments.

Bit/PAM4 only function

First generation: 100G/lane electrical and optical

- Hosts A and B have bit muxing PMAs
- Modules A and B are lane-by-lane retimers (no symbol alignment or deskew logic)
- Bit muxing persists over all segments

Transition: 100G/lane electrical, 200G/lane optical

- Hosts A and B have bit muxing PMAs
- Modules A and B are 8:4 gearboxes (with additional logic)
- Symbol muxing is applied only over the optical segment

Transition: mixed electrical, 200G/lane optical

- Host A uses symbol muxing (mandatory for 200G/lane)
- Module A is not symbol aware
- Host B uses bit muxing
- Module B is a 8:4 gearbox (with additional logic for muxing conversion)
- Symbol muxing is carried over the optical segment and electrical segment A

FEC Symbol-aware function
Bymbolmuxed

Compatibility between hosts with different electrical rates is
maintained

Bit/PAM4 only function

Summary

- A path for 200G/lane signaling using symbol-muxing PMA was presented
- Uses the existing PCS specifications
- Enables good performance of the RS FEC with correlated errors.
- Implementations with co-located PCS and with non-gearbox modules are straightforward.
- Gearbox modules (100G electrical, 200G optical) need additional muxconversion logic
- But these modules are expected to exist mainly in a transition phase.
- Interoperability of 200G/lane optical PHYs is possible:
- With existing PCS implementations
- With different modules (AUI rates) in each host.

Backup

Recall: 400GBASE-R 16-lane AM block mapping

Figure 119-7-400GBASE-R alignment marker mapping to PCS lanes

800GBASE-R PCS

AM Marker Encoding

- CMO-CM5 and UPO-UP2 are unchanged from 400GbE CL119
- UMO/UM3 for Flow lanes 0-15 are inverted from 400GbE
- UM1/UM2/UM4/UM5 for Flow lanes 16-31 are inverted from 400GbE
- Prevents lock with 400GbE ports
- Maintains DC balance

Abstract

Flow Encoding Lane \# CMo CM1 CM2 UPO CM3 CM4 CM5 UP1 UMO UM1 UM2 UP2 UM3 UM4 UM5 | 30 | $0 \times 9 A$ | $0 \times 4 A$ | 0×26 | $0 \times D 0$ | 0×65 | $0 \times B 5$ | $0 \times D 9$ | $0 \times B 1$ | $0 \times C A$ | $0 x 04$ | 0×59 | $0 \times 4 E$ | 0×35 | $0 \times F B$ | $0 \times A 6$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 31 | $0 \times 9 A$ | $0 \times 4 A$ | 0×26 | $0 \times B 4$ | 0×65 | $0 \times B 5$ | $0 \times D 9$ | 0×56 | $0 \times A 6$ | 0×45 | 0×86 | $0 \times A 9$ | 0×59 | $0 \times B A$ | 0×79 |

800GBASE－R 32－lane AM block mapping

PCS lane，i	am＿mapped 10－bit symbol index， k													
	0	1	2	3	4	5	6	7	8	9	10	11		12
0	am＿0												A	
1	am＿1												B	
2	am＿2												A	
3	am＿3												B	ס
4	am＿4												A	용
5	am＿5												B	，
6	am＿6												A	$\stackrel{4}{5}$
7	am＿7												B	$\stackrel{\square}{6}$
8	am＿8												A	$\stackrel{\rightharpoonup}{\text { ¢ }}$
9	am＿9												B	
10	am＿10												A	
11	am＿11												B	
12	am＿12												A	
13	am＿13												B	$\left(6\right.$ bits）${ }^{(4 \text { bits })}$
14	am＿14												A	Resumption of
15	am＿15												B	257－bit blocks
16	am＿16												C	
17	am＿17												D	\bigcirc
18	am＿18												C	$\stackrel{\square}{\square}$
19	am＿19												D	\％
20	am＿20												C	$\stackrel{\square}{0}$
21	am＿21												D	«
22	am＿22												C	$\stackrel{\text { ⿳亠丷厂阝 }}{ }$
23	am＿23												D	$\overline{3}$
24	am＿24												C	
25	am＿25												D	
26	am＿26												C	
27	am＿27												D	
28	am＿28												C	
29	am＿29												D	（6 bits）（4 bits）
30	am＿30												C	Resumption of 257－bit blocks
31	am＿31												D	

Per 172．2．4．4：
Each flow is identical
to the function
specified in 119．2．4．4
400GBASE－R flow 0

400GBASE－R flow 1

Mapping of 32-lane AM block to 4 physical lanes with the proposed muxing order

PMA lane, ${ }^{\text {j }}$	am_muxed 10-bit symbol index, m		
	0-95	96-103	104
0	am_0, am_1, am_16, am_17, am_8, am_9, am_24, am_25-symbol interleaved (checkerboard removed)		
1	am_2, am_3, am_18, am_19, am_10, am_11, am_26, am_27-symbol interleaved (checkerboard removed)	Reesulot	
2	am_4, am_5, am_20, am_21, am_12, am_13, am_28, am_29-symbol interleaved (checkerboard removed)	Bootmuxn	
3	am_6, am_7, am_22, am_23, am_14, am_15, am_30, am_31-symbol interleaved (checkerboard removed)		

On each PMA lane, an AM group has 120*8=960 bits, spanning 96 RS symbols and 480 UI

AM group content of PMA(32:4) output (PCS lane grouping: $[0,1,16,17,8,9,24,25]+2 n$)

n	AM block content (96 10-bit symbols) - transmission order left to right, LSB first
0	$0 \times 29 \mathrm{~A}, 0 \times 192,0 \times 362,0 \times 042,0 \times 362,0 \times 042,0 \times 202,0 \times 2 \mathrm{~B} 2,0 \times 202,0 \times 2 \mathrm{~B} 2,0 \times 194,0 \times 196,0 \times 194,0 \times 196$, $0 \times 195,0 \times 195,0 \times 195,0 \times 195,0 \times 1 B 5,0 \times 1 F 6,0 \times 276,0 \times 1 F 6,0 \times 276,0 \times 0 B 6,0 \times 3 F 6,0 \times 0 B 6,0 \times 3 F 6,0 \times 3 E D, 0 \times 256,0 \times 01 \mathrm{D}, 0 \times 1 \mathrm{~A} 6,0 \times 1 \mathrm{E} 9,0 \times 0 E A, 0 \times 219,0 \times 31 \mathrm{~A}$, $0 \times 37 \mathrm{~A}, 0 \times 1 \mathrm{C} 7,0 \times 085,0 \times 238,0 \times 312,0 \times 1 \mathrm{CC}, 0 \times 0 \mathrm{ED}, 0 \times 233,0 \times 2 \mathrm{~F} 3,0 \times 07 \mathrm{E}, 0 \times 20 \mathrm{C}, 0 \times 081,0 \times 075,0 \times 13 \mathrm{C}, 0 \times 08 \mathrm{~A}, 0 \times 1 \mathrm{C} 3,0 \times 2 \mathrm{~A} 6,0 \times 049,0 \times 166,0 \times 389,0 \times 057,0 \times 058,0 \times 397,0 \times 398,0 \times 0 E 0,0 \times 215,0 \times 31 \mathrm{~F}, 0 \times 1 \mathrm{EA}$, $0 \times 0 C E, 0 \times 3 B 7,0 \times 331,0 \times 048,0 \times 204,0 \times 032,0 \times 1 \mathrm{FB}, 0 \times 3 C D, 0 \times 30 \mathrm{C}, 0 \times 22 \mathrm{~A}, 0 \times 0 \mathrm{~F} 3,0 \times 1 \mathrm{D} 5$
1	$0 \times 29 A, 0 \times 192,0 \times 062,0 \times 1 A 2,0 \times 062,0 \times 1 A 2,0 \times 3 A 2,0 \times 2 C 2,0 \times 3 A 2,0 \times 2 C 2,0 \times 195,0 \times 195,0 \times 195$, $0 \times 195,0 \times 195,0 \times 197,0 \times 195,0 \times 197,0 \times 1 B 5,0 \times 136,0 \times 3 B 6,0 \times 136,0 \times 3 B 6,0 \times 076,0 \times 136,0 \times 076,0 \times 136,0 \times 01 F, 0 \times 398,0 \times 3 E F, 0 \times 068,0 \times 2 A 0,0 \times 1 D 7,0 \times 150$, $0 \times 227,0 \times 201,0 \times 3 C F, 0 \times 1 F E, 0 \times 030,0 \times 19 B, 0 \times 3 A D, 0 \times 264,0 \times 052,0 \times 156,0 \times 3 D 0,0 \times 1 A 9,0 \times 32 F, 0 \times 3 D 8,0 \times 238,0 \times 327,0 \times 2 C 7,0 \times 19 E, 0 \times 380,0 \times 25 E, 0 \times 040,0 \times 0 A 3,0 \times 17 E, 0 \times 363,0 \times 2 B E, 0 \times 0 C 3,0 \times 3 F 8,0 \times 33 C$, $0 \times 007,0 \times 149,0 \times 192,0 \times 2 B 6,0 \times 26 \mathrm{D}, 0 \times 0 B D, 0 \times 2 A 4,0 \times 342,0 \times 15 B, 0 \times 31 E, 0 \times 09 C, 0 \times 0 E 1,0 \times 363$
2	$0 \times 29 \mathrm{~A}, 0 \times 192,0 \times 212,0 \times 322,0 \times 212,0 \times 322,0 \times 182,0 \times 142,0 \times 182,0 \times 142,0 \times 197,0 \times 197,0 \times 197,0 \times 197$, $0 \times 194,0 \times 194,0 \times 194,0 \times 194,0 \times 1 B 5,0 \times 3 B 6,0 \times 276,0 \times 3 B 6,0 \times 276,0 \times 336,0 \times 2 F 6,0 \times 336,0 \times 2 \mathrm{~F} 6,0 \times 151,0 \times 2 \mathrm{D} 4,0 \times 2 \mathrm{~A} 1,0 \times 124,0 \times 1 \mathrm{D} 5,0 \times 0 E C, 0 \times 225,0 \times 31 \mathrm{C}$, $0 \times 13 F, 0 \times 147,0 \times 2 C 0,0 \times 2 B 8,0 \times 25 F, 0 \times 3 D 9,0 \times 1 A 0,0 \times 026,0 \times 2 F 2,0 \times 1 D 1,0 \times 20 D, 0 \times 12 E, 0 \times 095,0 \times 3 C 3,0 \times 06 A, 0 \times 33 C, 0 \times 0 A C, 0 \times 2 B 9,0 \times 36 C, 0 \times 179,0 \times 04 C, 0 \times 0 A 9,0 \times 38 C, 0 \times 369,0 \times 2 E 2,0 \times 301,0 \times 11 D, 0 \times 0 F E$, $0 \times 09 \mathrm{~A}, 0 \times 283,0 \times 365,0 \times 17 \mathrm{C}, 0 \times 0 B A, 0 \times 036,0 \times 345,0 \times 3 C 9,0 \times 0 F 1,0 \times 1 A 8,0 \times 30 E, 0 \times 257$
3	$0 \times 29 \mathrm{~A}, 0 \times 192,0 \times 3 \mathrm{D} 2,0 \times 222,0 \times 3 \mathrm{D} 2,0 \times 222,0 \times 102,0 \times 342,0 \times 102,0 \times 342,0 \times 194,0 \times 194,0 \times 194$, $0 \times 194,0 \times 196,0 \times 197,0 \times 196,0 \times 197,0 \times 1 B 5,0 \times 0 B 6,0 \times 3 B 6,0 \times 0 B 6,0 \times 3 B 6,0 \times 1 B 6,0 \times 076,0 \times 1 B 6,0 \times 076,0 \times 3 D E, 0 \times 293,0 \times 02 E, 0 \times 163,0 \times 35 B, 0 \times 195,0 \times 0 A B$, $0 \times 265,0 \times 1 \mathrm{D} 8,0 \times 272,0 \times 227,0 \times 18 \mathrm{D}, 0 \times 2 \mathrm{E} 9,0 \times 3 \mathrm{EC}, 0 \times 116,0 \times 013,0 \times 1 \mathrm{~A} 1,0 \times 15 \mathrm{~B}, 0 \times 15 \mathrm{E}, 0 \times 1 \mathrm{~A} 4,0 \times 2 \mathrm{~A} 6,0 \times 179,0 \times 259,0 \times 186,0 \times 1 \mathrm{~B} 3,0 \times 084,0 \times 273,0 \times 344,0 \times 1 \mathrm{AA}, 0 \times 293,0 \times 26 \mathrm{~A}, 0 \times 153,0 \times 234,0 \times 09 \mathrm{D}, 0 \times 1 \mathrm{CB}$, $0 \times 362,0 \times 04 \mathrm{C}, 0 \times 05 \mathrm{~A}, 0 \times 3 B 3,0 \times 3 A 5,0 \times 292,0 \times 179,0 \times 16 \mathrm{D}, 0 \times 286,0 \times 219,0 \times 164,0 \times 1 \mathrm{E} 6,0 \times 29 \mathrm{~B}$

The PCS AMs are de-skewed, and then symbol-muxed (with checkerboard pattern removed) create AM groups. The first 16 symbols (160 bits, 80 PAM4 symbols) in the AM group are identical in all 4 lanes. The 200G/lane AM locking logic identifies the physical lanes and the alignment from the known content of the AM groups.
The resulting PAM4 pattern has very low DC content and reasonable transition densities (see next slides).

Properties of AM groups (800GBASE-R)

PAM4 sequences of AM groups

(no precoding)

- The standard deviation of the PAM4 constellation $\{-3,-1,1,3\}$ is $\sqrt{5}$
- The average of $n=480$ random PAM4 symbols has a standard deviation $\sigma_{n}=\frac{\sqrt{5}}{\sqrt{480}} \approx 0.1$
- The maximum DC content across groups (lanes 2 and 3) is about $\frac{1}{2} \sigma_{n}$
- This is a very typical block in terms of DC content
- DC content is not an issue

Transition densities of AM groups (no precoding)

$\sigma_{n}=\frac{\sigma}{\sqrt{480}}$ where σ is the standard deviation of the transition probability distribution

Transition type	Density in random data (mean $\pm \sigma_{n}$ for $\boldsymbol{n}=480$)	AM group PMA lane 0	AM group PMA lane 1	AM group PMA lane 2	AM group PMA lane 3
All transitions	$75 \% \pm 4 \%$	74\%	75\%	78\%	80\%
Zero crossings	50\% $\pm 3 \%$	55\%	53\%	54\%	57\%
Symmetric crossings	25\% $\pm 2 \%$	24\%	24\%	26\%	25\%

- Transition density values deviate from the expected values by up to $2.3 \sigma_{n}$ (usually upward). This deviation occurs in $\sim 1 \%$ of random data blocks.
- It is nowhere as pathologic as the "clock content" issue explored in 802.3bs (anslow 01121916 elect)
- Likely not an issue for CDRs, but may be implementation dependent

