COM analysis of contributed

 C2M channels - towards a 200 Gb/s per lane AUI proposalAdee Ran, Cisco

Intro

- For a C2M baseline proposal we need to agree on channels and endpoint assumptions
- Effects on the architecture should also be considered
- This presentation addresses
- What channels are feasible
- What error statistics can be expected
- What would it take

Previous work

- Several sets of AUI channels have been contributed
- akinwale 3df 01 2209, akinwale 3df 02 2209, akinwale 3df 032209 (chip to module, range of losses)
- mellitz 3df 022207 (chip to chip)
- rabinovich 3df 01 2209, rabinovich 3df 012209 (chip to module)
(+some earlier contributions)
- mli 3df 02a 220316 proposes die termination and package model
- benartsi 3df 01b 2207 proposes model and parameters for largescale switch package
- kareti 3df 01a 2207 suggests large-scale switch applications may need $36-38 \mathrm{~dB}$ die to die

Goals of this presentation

- Propose a set of COM parameters (and a configuration spreadsheet) for $200 \mathrm{~Gb} / \mathrm{s}$ AUI application
- Propose a loss budget for C2M
- Highlight effects on the 802.3dj architecture beyond electrical specifications

Method

1. Define channel construction for C 2 M simulation
2. Identify the key COM parameters for a selected subset of C2M channels
3. Propose a set of values for these parameters (operating point)
4. Examine sensitivity around the working point
5. Run COM on the full set of channels

Channel construction

Channel set for operating point selection

Channel $\#$	Source	File/folder Name(s)	IL [dB] @ 56.125 GHz (Thru, BGA to BGA)	IL [dB] including packages (min, max)
$1-3$	rabinovich_3df_02_2209	Rabinovich_C2M_200G_Paral_*mil_092122 $[19,67,93]$	$12.3,13.3,13.4$	$21.3-26.4$
$4-5$	mellitz_3df_02_2207	TA_6002_6003 TA_600_6003_tp0_tp5	13.9	$22.9-37.3$
$6-12$	akinwale_3df_02_2209	C2M_PCB_93ohms_*dB_202208016_v2 $[10,15,20,22,24,26,28]$	$8.8,13,18.1,20.6,22.3$, $24.9,26.6$	$17.8-39.9$

$15 \mathrm{~mm} / 30 \mathrm{~mm}$ host packages and module package add $9 / 13 \mathrm{~dB}$ to each channel

(without die models)

Key parameters

- Initial analysis identified the following parameters as having a large effect on COM:
- η_{0} (receiver input noise spectral density)
- T_{r} (transmitter bandwidth)
- f_{r} (receiver bandwidth)
- Max b(1)
- DER
(other parameters that may also have a large effect, but are considered hard to change, were not included in the analysis)
- A set of values for these parameters, which makes two challenging channels have $C O M \approx 3 \mathrm{~dB}$, was defined as the "operating point"
- Channel \# 5 (37.3 dB die-to-die)
- Channel \#10 (35.3 dB die-to-die)

Proposed values for key parameters

Parameter	In 100GBASE-CR (Clause 162)	In 100GAUl-1 C2C (Annex 120F)	Proposed Value for 200GAUI	Rationale
$\mathrm{n}_{0}\left[\mathrm{~V}^{2} / \mathrm{GHz}\right]$	$9 \mathrm{e}-9$	2e-8	4e-9	About the same RMS with doubled bandwidth. Related to package xtalk, thermal and device noise; Challenging but achievable
T_{r} [ps]	7.5	7.5	6	Silicon switching speed does not scale; improved only by process
f_{r}	$0.75 * \mathrm{f}_{\mathrm{b}}(\approx 40 \mathrm{GHz}$)	$0.75 * \mathrm{f}_{\mathrm{b}}(\approx 40 \mathrm{GHz})$	0.55* $\mathrm{f}_{\mathrm{b}}(\approx 58 \mathrm{GHz}$)	High bandwidth is challenging; lower BW improves COM results
$\mathrm{bb}_{\max }(1)$	0.85	0.65	1	High value required for high loss channels; error propagation can be addressed
SNR ${ }_{\text {TX }}$	32.5	33	32.5	Increasing would burden design and has diminishing return on high loss channels
DER ${ }_{0}$	$1 \mathrm{e}-4$	$1 \mathrm{e}-5$	1e-4	RS544 with uncorrelated errors needs DER=4e-4 for FLR=1e-12 BER budgeting with a low portion for AUIs does not seem feasible (may be split between 2 AUIs)
N_{b}	12	6	24	Scale with UI
N_{f}	40	0	80	Scale with UI
Tx FFE length	5 (3 pre)	5 (3 pre)	6 (4 pre)	Compensate better for pulse rise time; relatively cheap to implement

Note: full proposed parameter table in the final slide

COM results at operating point

Implications

- DERO $=1 \mathrm{e}-4$ is close to the full RS544 correction capability
- We need to enable error correction for the electrical segment alone
- Operating with 1e-5 may be possible with lower loss channels - in these cases it may be possible to bypass error correction
- Possible solution: Flexible segmented / concatenated architecture
- Large value of $b_{\max }(1) \Rightarrow$ correlated errors are possible
- If bit muxing is used, the actual BER will need to be much lower than $D_{0} / 2$ to get equivalent FEC performance
- Possible solution: Symbol muxing PMA
- Tx FFE values have a large variation over the channels considered (see backup)
- This is for a specific reference receiver; real receivers may vary further
- Tx parameters may need to be optimized per AUI channel/receiver
- Module output too
- Possible solution: Link training over the AUI segment

Effect of η_{0}

$\eta_{0}\left[\mathrm{~V}^{2} / \mathrm{GHz}\right]$ sweep from 1e-9 to 9e-9 in 1e-9 step

Effect of T_{r}

T_{r} [ps] sweep from 3.5 to 7.5 in 0.5 step

Effect of f_{r}

f_{r} / f_{b} sweep from 0.4 to 0.75 in 0.05 step

Effect of $\mathrm{bb}_{\text {max }}(1)$

$\mathrm{bb}_{\max }(1)$ sweep from 0.5 to 1 in 0.1 step

Effect of SNR $_{T X}$

$\mathrm{SNR}_{\mathrm{TX}}$ sweep from 29 to 34 in 0.5 step

Effect of DER ${ }_{0}$

$D E R_{0}$ sweep from 1e-5 to 1e-3, 4 steps per decade

Future work

- Fine-tune parameters with more channels
- Analyze the effect of bit/symbol muxing on FLR with given DER
- Consider electrical specification method for C2M
- What should be similar to C2C / backplane
- What should be different
- Address functional aspects
- Symbol muxing
- Link training on AUIs within a segmented link (optical/electrical)

Summary

- Feasibility of contributed C2M channels with die-to-die IL from 18 dB to 37 dB has been demonstrated by COM analysis
- An operating point for key parameters is proposed
- Implications beyond electrical specifications must be considered
- FEC scheme
- Symbol muxing
- Link training on AUI

Proposed COM spreadsheet (operating point)

Table 93A-1 parameters			
Parameter	Setting	Units	Information
f_b	106.25	GBd	
f min	0.02	GHz	
Delta_f	0.02	GHz	
C_d	[40 90 110; 40900110$]^{* 1 e-6}$	nF	[TX RX]
L_S	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TXRX]
C_b	[0.3e-4 0.3e-4]	nF	[TXRX]
2_p select	[12]		[test cases to run]
$z _p(T X)$	[15 30; 22; 0.18 0.18; 0.5 0.5]	mm	[test cases]
2_p ${ }^{\text {dexT }}$)	[$66 ; 0.50 .5 ; 0.180 .18 ; 0.40 .4$]	mm	[test cases]
$z_{\sim} \quad$ p (FEXT)	[15 30; 22; 0.180.18; 0.5 0.5]	mm	[test cases]
$\underline{Z} _$p (R)	[$66 ; 0.50 .5 ; 0.180 .18 ; 0.40 .4]$	mm	[test cases]
C_p	[8e-6 0]	nF	[TX RX]
R_0	50	Ohm	
R_d	[50 50]	Ohm	[TX RX]
A_v	0.413	v	
A_fe	0.413	v	
A_ne	0.608	v	
L	4		
M	32	Samp/U	
samples_for_C2M	100	Samp/uI	
T_O	50	mU	
AC_CM_RMS	0	v	[test cases]
filter and Eq			
f_r	0.55	*fb	
c(0)	0.5		min
$\mathrm{c}-1)^{\text {a }}$	[-0.34:0.02:0]		[min:step:max]
c(-2)	[0:0002:0.14]		[min:step:max]
$\mathrm{c}(-3)$	[-0.006:0.02:0]		[min:step:max]
c(-4)	[0:00.01:0.03]		[min:step:max]
c(1)	[-0.1:0:002:0]		[min:step:max]
N_b	24	UI	
b_max(1)	1		As/dffe1
b_max(2..N_b)	0.3		As/dfe2..N_b
b_min(1)	0.3		As/dffe1
b_min(2..N_b)	-0.15		As/dfe2..N_b
g_DC	[-18:1:8]	dB	[min:step:max]
$\mathrm{f}_{\text {_ }}$	42.5	GHz	
$\mathrm{f}_{\text {¢ }} \mathrm{p} 1$	42.5	GHz	
${ }_{\text {f }}$	106.25	GHz	
g_DC_HP	[-3:0:5:0]		[min:step:max]
$\mathrm{f}_{\text {_ } \mathrm{HP} \text { _PZ }}$	0.6	GHz	

1/0 control			Table 93A-3 parameters		
DIAGNOSTICS	1	logical	Parameter	Setting	Units
DISPLAY_WINDOW	0	logical	package_tı_gamma0_a1_a2	[01.33e-3 3.9525e-4]	
CSV_REPORT	1	logical	package_tl_tau	6.420E-03	ns/mm
RESULT_DIR	.\|results \date\}\}	Path	package_Z_c	[9494;9090; 200 200; 70 70]	Ohm
SAVE_FIGURES	0	logical	ICN \& FOM_ILD parameters		
Port Order	[1324]		f_v	0.371	*Fb
RUNTAG	C2M_eval_		f_f	0.371	GHz f_r specified in first column
COM_CONTRIBUTION	0	logical	f_n	0.371	GHz
Local Search	2		f_2	58.4375	GHz
Operational			A_ft	0.600	v
COM Pass threshold	3	dB	A_nt	0.600	v
ERL Pass threshold	7.3	dB	Histogram_Window_Weight	Gaussian	gaussian. triangle, rectangle
			sigma_r	0.02	sigma in Ul fo or gaus.. Wind
DER_0	1.00E-04				
T_r	6.00E-03	ns	Table 92-12 parameters		
FORCE_TR	1	5	Parameter	Setting	
PMD_type	C2C		board_tı_gamma0_11_a2	[03.8206e-04 9.5909e-05]	
BREAD_CRUMBS	0	logical	board_tI_tau	0.00579	ns/mm
SAVE_CONFIG2MAT	1	logical	board_Z_c	100	Ohm
PLOT_CM	0	logical	2_bp (TX)	407	mm
TDR and ERL options			z_bp ((EXT)	407	mm
TDR	1	logical	2_bp (FEXT)	407	mm
ERL	1	logical	$\underline{2}$ _bp (RX)	407	mm
ERL_ONLY	0	logical	C_0	0	nF
TR_TDR	0.01	ns	C_1	0	nF
N	1200		Include PCB	0	logical
beta_x	0				
rho_x	0.618				
fixture delay time	[00]	port1 port2	different for each test fixture		
TDR_W_TXPKG	0				
N_bx	0	UI			
Tukey_Window	1		updated for 802.3dt/dj C2M		
Receiver testing					
RX_CALBRATION	0	logical			
Sigma BBN step	5.00--03	v			
Noise, jitter					
sigma_RJ	0.01	UI			
A_DD	0.02	UI			
eta_0	4.00E-09	V^2/GHz			
SNR_TX	32.5	dB			
R_LM	0.95				

Backup

All contributed channels at operating point (Color scale: IL D2D)

```
min(COM) per channel_id
    akinwale_3df_2209/100ohms/C2M_PCB_100ohms_11dB_202208016_v2 akinwale_3df_2209/100ohms/C2M_PCB_100ohms_14dB_202208016_v2 akinwale_3df_2209/100ohms/C2M_PCB_100ohms_17dB_202208016_v2 akinwale_3df_2209/100ohms/C2M_PCB_100ohms_20dB_202208016_v2 akinwale_3df_2209/100ohms/C2M_PCB_100ohms_23dB_202208016_v2 akinwale_3df_2209/100ohms/C2M_PCB_100ohms_26dB_202208016_v2 akinwale_3df_2209/85ohms/C2M_PCB_85ohms_12dB_202208016_v2 akinwale_3df_2209/850hms/C2M_PCB_85ohms_15dB_202208016_V2 akinwale_3df_2209/85ohms/C2M_PCB_85ohms_18dB_202208016_v2 akinwale_3df_2209/850hms/C2M_PCB_85ohms_21dB_202208016_V2 akinwale_3df_2209/85ohms/C2M_PCB_85ohms_24dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_10dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_13dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_16dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_19dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_22dB_202208016_v2 akinwale_3df_2209/93ohms/C2M_PCB_93ohms_25dB_202208016_v2 mellitz_3df_02_2207/TA_6002_6003_tp0_tp5 rabinovich_3df_01_2209/rabinovich_C2M_200G_Ortho_93mil_092122
```


All contributed channels at operating point (Color scale: ICN)

Tx FFE coefficients

COM/IL scatter plot

COM_dB vs. IL die-to-die

COM/ICN scatter plot

