## Low Latency and Long Reach PHY Proposals

William Lo

25 January 2024

## Overall Objectives

- Low Latency
- 100 meters, < 1.5 us latency
- Can be less bandwidth efficient to decrease latency
- FEC is a bonus
- Long Reach
- 500 meters, latency less important
- Bandwidth efficient to decrease baud rate, hence longer reach
- Bounded Disparity
- Intrinsic safety
- Reduce cost to implement
- Assume one solution does NOT fit all
- Expensive portions keep common
- Differentiate on less costly components between Low Latency and Long Reach


## Summary of Proposed Baseline

## - Transmit Path shown, Reverse arrows for Receive Path

- No bounded disparity shown for comparison only.

Low Latency - No
Bounded Disparity


IEEE 802.3dg Task Force

Low Latency -
Bounded Disparity


3

## Long Reach Bounded Disparity



## Encoder

- Use $8 \mathrm{~N} /(8 \mathrm{~N}+1)$ encoding discussed in
- https://grouper.ieee.org/groups/802/3/bp/public/mar14/Lo 3bp 02 0314.pdf
- No lane alignment required (vs traditional 64/66 or 64/65) as this would add latency
- $\mathrm{N}=2$ for Low Latency (Shorter delays)
$\mathbb{N}=$ number of GMII octets encoded into block. Octets numbered $n=0,1,2, \ldots, N-1$.
- $\mathrm{N}=8$ for Long Reach (More efficient)
- N parameterizable in

Clause 97.3.2.2.5

- Arbitrary placement of control codes
$\mathrm{TC}[\mathrm{n}]=0$ if octet n is data octet on GMII, 1 if octet $n$ is control octet on GMII $\mathrm{TC}[-1]=1$ by definition
$\operatorname{TD}[\mathrm{n}][0: 7]=\operatorname{GMII}$ octet $\mathrm{n} \operatorname{TXD}[0: 7]$ if $\operatorname{TC}[\mathrm{n}]=0$
$\operatorname{TD}[\mathrm{n}][5: 7]=010$ - IPG (loc phy ready $=0 \mathrm{O}$ ), 101 - LPI, 001 - TXError, 000 - IPG
(loc phy ready $=N O T$ OK) if TC[n] $=1$. TD $[\mathrm{n}][0: 4]$ is undefined.
$\mathrm{B}[0: \overline{8} \mathrm{~N}]$ is the $8 \mathrm{~N}+1$ block. Bit 0 transmitted first.
$\mathrm{R}(\mathrm{n})=$ Bitwise OR of $\mathrm{TC}[\mathrm{n}: \mathrm{N}-1]$
$\operatorname{NEXT}(\mathrm{n})[0: 3]=$ bit position of lowest bit in $\operatorname{TC}[\mathrm{n}: \mathrm{N}-1]$ that is a 1 . Bit 3 is MSB. $\operatorname{NEXT}(\mathrm{n})[4]=0$ if Bitwise SUM of $\mathrm{TC}[\mathrm{n}: \mathrm{N}-1]=1$, else 1
$\mathrm{B}[0]=\quad \mathrm{OR}(0)$
$B[8 n+1: 8 n+4]=\quad \operatorname{TD}[n][0: 3]$ - if $O R(n)=0$
$\operatorname{NEXT}(\mathrm{n})[0: 3]-$ if $\operatorname{OR}(\mathrm{n})=1 \operatorname{AND} \operatorname{TC}[\mathrm{n}-1]=1$
$\operatorname{TD}[\mathrm{n}-1][3: 6]-$ if $O R(\mathrm{n})=1 \operatorname{AND} \operatorname{TC}[\mathrm{n}-1]=0$
$\mathrm{B}[8 \mathrm{n}+5]=$
$\operatorname{TD}[n][4]-$ if $O R(n)=0$
$\operatorname{NEXT}(n)[4]-i f(n)$
$\operatorname{OR}(n)$
$\operatorname{TC}[n-1]=1$
$\operatorname{NEXT}(n)[4]$ - if $O R(n)=1$ AND $\operatorname{TC}[n-1]=$
$\operatorname{TD}[n-1][7]$ - if $O R(n)=1$ AND TC[n-1] $=$
$\operatorname{TD}[\mathrm{n}-1][7]$ - if $O R(n)=1$
$\operatorname{TD}[\mathrm{n}][5: 7]$ - if $O R(n)=0$
$\operatorname{TD}[n][5: 7]$ - if $O R(n)=1$ AND $\operatorname{TC}[n]=1$
$T D[n][5: 7]$ if $O=1$ AND $T C[n]=0$
$\operatorname{TD}[n][0: 2]$ - if $O R(n)=1$
- Example: D/C/D/C/C/D/C/D
$B[8 n+6: 8 n+8]=$



## Reed Solomon

- Low Latency
- RS(20, 14) GF( $2^{5}$ )
- Four 16/17 blocks,
- RS block duration is 640ns
- Up to 96ns burst protection
- 2 OAM bits
- Overhead 100/64 = 56.25\%
- Long Reach
- RS(100, 94) GF( $2^{7}$ )
- Ten 64/65 blocks,
- RS block duration is 6400 ns
- Up to 192ns burst protection
- 8 OAM bits
- Overhead 700/640 = 9.375\%
- Both have similar circuit structure with 6 parity symbols


## Scrambler

- Use MGBASE-T1 scrambler Clause 149.3.4
- Easy transitioning from training in PAM2 into PAM4
- Don't reinvent the wheel
- Master: $g M(x)=1+x^{13}+x^{33}$
- Slave: $g S(x)=1+x^{20}+x^{33}$


## Bounded Disparity Coding

- Low Latency
- 5-bit, 3-PAM4 symbols (5B3S)
- $20 \%$ overhead
- $(8 \mathrm{~b} / 10 \mathrm{~b}$ overhead is $25 \%)$
- Long Reach
- 7-bit, 4-PAM4 symbols (7B4S)
- 14.3\% overhead
- Matches 5-bit and 7-bit RS Symbols
- Any symbol corrupted affects only 1 symbol

- DC Balanced
- More low frequency component (less attenuation) vs PAM2 8b/10b
- $8 b / 10 b$ to PAM4 assumes grouping every 2 bits to form PAM4 symbol
- $8 b / 10 b$ interleaved to PAM4 matches PAM2 8b/10b


## 5B/3S Table

|  | NS = P |  |  | NS = N |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| r[4:0] | P [2] | P [1] | P [0] | N[2] | N[1] | N[0] |
| 0 | 1 | 1 | 1 | -1 | -1 | -1 |
| 1 | 1 | 1 | -1 | -1 | -1 | 1 |
| 2 | 1 | -1 | 1 | -1 | 1 | -1 |
| 3 | -1 | 1 | 1 | 1 | -1 | -1 |
| 4 | 1 | 1 | 3 | -1 | -1 | -3 |
| 5 | -1 | -1 | 3 | 1 | 1 | -3 |
| 6 | 1 | -1 | 3 | -1 | 1 | -3 |
| 7 | -1 | 1 | 3 | 1 | -1 | -3 |
| 8 | 1 | 3 | 1 | -1 | -3 | -1 |
| 9 | 1 | 3 | -1 | -1 | -3 | 1 |
| 10 | -1 | 3 | -1 | 1 | -3 | 1 |
| 11 | -1 | 3 | 1 | 1 | -3 | -1 |
| 12 | 1 | 3 | 3 | -1 | -3 | -3 |
| 13 | 1 | 3 | -3 | -1 | -3 | 3 |
| 14 | 1 | -3 | 3 | -1 | 3 | -3 |
| 15 | -1 | 3 | 3 | 1 | -3 | -3 |
| 16 | 3 | 1 | 1 | -3 | -1 | -1 |
| 17 | 3 | 1 | -1 | -3 | -1 | 1 |
| 18 | 3 | -1 | 1 | -3 | 1 | -1 |
| 19 | 3 | -1 | -1 | -3 | 1 | 1 |
| 20 | 3 | 1 | 3 | -3 | -1 | -3 |
| 21 | 3 | 1 | -3 | -3 | -1 | 3 |
| 22 | 3 | -1 | 3 | -3 | 1 | -3 |
| 23 | -3 | 1 | 3 | 3 | -1 | -3 |
| 24 | 3 | 3 | 1 | -3 | -3 | -1 |
| 25 | 3 | 3 | -1 | -3 | -3 | 1 |
| 26 | 3 | -3 | 1 | -3 | 3 | -1 |
| 27 | -3 | 3 | 1 | 3 | -3 | -1 |
| 28 | 3 | 3 | 3 | -3 | -3 | -3 |
| 29 | 3 | 3 | -3 | -3 | -3 | 3 |
| 30 | 3 | -3 | 3 | -3 | 3 | -3 |
| 31 | -3 | 3 | 3 | O 3 | -3 | -3 |

Table scales the PAM4 values by $3 x$ and shows $+/-3$ and $+/-1$ instead of $+/-1$ and $+/-1 / 3$ to avoid printing fractions

## Easy to Implement 5B/3S and 7B/5S

- No Table Lookup
- Code construction example below shows 5B3S. Similar concept for 7B/4S.
- Let $\mathrm{r}[4: 0]$ be the 5 -bit binary code. There are 32 possible codes. Let this set of codes be called the set $\mathbf{R}$.
- The PAM4 side each output is a tuple of three PAM4 symbols.

There are 64 possible codes $(4 \times 4 \times 4=64)$.

- We'll use $+3,+1,-1,-3$ instead of $+1,+1 / 3,-1 / 3,-1$ to avoid writing fractions in the notation below
- Let $\mathrm{L}[2: 0]$ be a tuple $\{a, b, c\}$ where $a, b, c$ is either 1 or 3 where
- if $r[i+2]=0$ then $L[i]=1$ and if $r[i+2]=1$ then $L[i]=3$
- Essentially do a simple mapping where a 0 will map to either PAM4 +/- 1 and a 1 maps to either PAM4 +/- 3
- i.e. $r[4: 2]=011$ maps to $\{1,3,3\}$


## 5B/3S construction continued

- Let $Q[2: 0]$ be a tuple $\{d, e, f\}$ where $d, e, f$ is either +1 or -1 where
- if $r[1: 0]=00$ then $Q=\{+1,+1,+1\}$
- if $r[1: 0]=01$ then $Q=\{+1,+1,-1\}$
- if $r[1: 0]=10$ then $Q=\{+1,-1,+1\}$
- if $r[1: 0]=11$ then $Q=\{-1,+1,+1\}$
- Exception, if $r=00101$ or 00110 then invert all three tuples
- ie $r=00101$ then $Q=\{-1,-1,+1\} . r=00110$ then $Q=\{-1,+1,-1\}$
- Let $\mathrm{P}[2: 0]=\{\mathrm{L}[2] \times \mathrm{Q}[2], \quad \mathrm{L}[1] \times \mathrm{Q}[1], \mathrm{L}[0] \times \mathrm{Q}[0]\}$
- Essentially set the sign of each element in $L$ with the sign in $Q$.
- i.e. $r=10001$ then $L=\{3,1,1\}, Q=\{+1,+1,-1\}$ hence $P=\{+3,+1,-1\}$


## 5B/3S construction continued

- There are 32 possible codes of $\mathrm{P}[2: 0]$. Call this the set $\mathbf{P}$ or positive set.

Each code in $P$ has a 1 to 1 mapping to a code in $\mathbf{R}$.
The sum of the three PAM4 symbols are all non-negative.
Define this sum as the disparity of this code.
i.e. $\{+3,-1,+3\}$ has a disparity of +5 .

- Let set $\mathbf{N}$ or negative set contain 32 possible codes N [2:0] with each code having a 1 to 1 mapping to a code in $\mathbf{P}$ where each symbol in the tuple N [2:0] is the negative of its corresponding $\mathrm{P}[2: 0]$.
i.e. $\mathrm{N}[2: 0]$ of $\{-1,+3,-3\}$ corresponds to $\mathrm{P}[2: 0]$ of $\{+1,-3,+3\}$

Implication of 1:1 mapping is that codes $\mathbf{N}$ also has 1:1 mapping to codes in $\mathbf{R}$ The disparity of the codes in set $\mathbf{N}$ are all non-positive

## Running Disparity

- Given stream of $r$ from $\mathbf{R}$, output the corresponding code from either $\mathbf{P}$ or $\mathbf{N}$
- Define the following variables:
- RD = Running disparity
- $N S=$ Next Set to use (N or P)
- 0) Initialize RD $=0$ and $N S=N$ (Doesn't really matter if it is $N$ or $P$ )
- 1) Output the 3 PAM4 symbols of the code corresponding to $r$ in the set indicated by NS
- Output symbol 2 , followed by 1 , followed by 0 . (Order doesn't really matter as long as we are consistent)
- 2) Update RD = RD + disparity of the code output above.
- Disparity bounded to between -9 to +9 inclusive at update point
- 3) Determine the next set to use
- If RD is positive set NS = N
- If RD is negative set NS = P
- If $R D$ is zero, no change to NS.
- Steps 1 to 3 repeats for every code output.


## Gray Code

- Gray code needed only for case without bounded disparity.
- 5-bit RS symbol mapped to 2.5 PAM4 symbols or two RS symbols mapped to 5 PAM4 symbol
- If PAM4 symbol that straddles the two 5-bit codes is damaged, it corrupts two RS symbols.
- Gray code mitigates this by minimizing the chance that both bits are inverted.
- i.e. $(-1) 00 \Leftrightarrow 01(-1 / 3), \quad(-1 / 3) 01 \Leftrightarrow 11(+1 / 3), \quad(+1 / 3) 11 \Leftrightarrow 10(+1)$


## Algorithm Latency

- All values in ns
- 400 ns+ sufficient for implementation

- $8 n /(8 n+1)$ Decoder
- If FEC on, Algorithm latency is 0 since there is no waiting once syndrome is computed
- If FEC off, need 12 bits to decode first byte. First PAM4 unmap presents 5 bits, so need 2 more unmap or $2 \times 32 \mathrm{~ns}=$ 64ns

| All values in ns | Low Latency <br> No bounded <br> disparity | Low Latency <br> Bounded disparity | Long Reach | Low Latency <br> Bounded disparity <br> FEC turned off |
| :--- | :---: | :---: | :---: | :---: |
| Encoder | 160 | 160 | 640 | 160 |
| RS Encoder Underflow | 192 | 192 | 384 | 192 |
| PAM4 mapping | 12.8 | 32 | 64 | 32 |
| PAM4 unmap | 12.8 | 32 | 64 | 32 |
| Syndrome Calc | 640 | 640 | 6400 | 0 |
| Decoder | 0 | 0 | 0 | 64 |
| Total Algorithm Latency | 1017.6 | 1056 | 7552 | 480 |
| Margin for implementation | 482.4 | 444 |  |  |

## PCS Parameter Summary

- Are we ok with different PHYs for low latency vs long reach?
- Low latency uses more bandwidth for short codes
- Long reach keeps baud rate low to reduce signal attenuation over long cables

|  | Low Latency <br> No bounded <br> disparity | Low Latency <br> Bounded disparity | Long Reach |
| :--- | :---: | :---: | :---: |
| Encoder | $16 / 17$ | $16 / 17$ | $64 / 65$ |
| Reed Solomon | RS(20, 14) 5-bits | RS(20, 14) 5-bits | RS(100, 94) 7-bits |
| Encoder blocks per RS Frame | 4 | 4 | 10 |
| OAM Bits per RS Frame | 2 | 2 | 8 |
| Encoder + RS Overhead | $56.25 \%$ | $56.25 \%$ | $9.38 \%$ |
| Scrambler | 33 -bits | $33-$ bits | 33 -bits |
| PAM4 mapping | gray coding | 5-bit to 3-symbol | 7 -bit to 4-symbol |
| Max burst protection | 96 ns | 96 ns | 192 ns |
| Baud Rate | 78.125 MBaud | 93.75 MBaud | 62.5 MBaud |
| Total Algorithm Latency (ns) | 1017.6 | 1056 | 7552 |
| Margin for implementation (ns) | 482.4 | 444 |  |

## Implementation Considerations for Dual Mode



- Relatively inexpensive to implement
- Possible logic sharing
- $8 \mathrm{~N} / 8 \mathrm{~N}+1$ parameterize the N for 2 and 8 .
- RS Frame FIFO
- RS datapath (both has 6 parity symbols)
- Same scrambler
- Expensive to implement
- Keep PAM 4 for both
- Low latency 93.75 MBaud is $1.5 x$ of Long Reach of 62.5 MBaud
- Simply run 1.5 times faster for Low Latency
- 3.33 times echo taps for long reach


## Reed Solomon Costs - Encoder



- CRC32 - 32 flip flops, XOR in feedback position
- $\mathrm{RS}(20,14) 5$ bits
- Similar structure to CRC except 5-bit Galois operation.
- $6 \times 5=30$ flip flops
- Constant Galois multipliers
- Approx $2 x$ size of CRC32
- RS $(100,94) 7$ bits
- $6 \times 7=42$ flip flops
- Approx $3 x$ size of CRC32

25 Jan 2024
AXONNE.

## Reed Solomon Costs - Decoder

- RS $(20,14) 5$ bits Syndrome
- 6 parity $\times 5$-bits $=30$ flip flops
- Constant Galois multipliers
- Approx $2 x$ size of CRC32
- $\quad \operatorname{RS}(100,94) 7$ bits
- $6 \times 7=42$ flip flops
- Approx $3 x$ size of CRC32




## Friendly PLL Ratios

- 62.5 Mbaud , 78.125 Mbaud, and 93.75 Mbaud were matched with RS parameter selection and bounded disparity overhead
- $78.125=1.25 \times 62.5$
- $93.75=1.5 \times 62.5$
- Using 25 MHz clock (Common inexpensive component) PLL ratios:
- $62.5 \mathrm{MHz}=20 / 8 \times 25 \mathrm{MHz}$
- $78.125 \mathrm{MHz}=25 / 8 \times 25 \mathrm{MHz}$
- $93.75 \mathrm{MHz}=30 / 8 \times 25 \mathrm{MHz}$
- 62.5 Mbaud is about as low as we can go with required overhead for RS-FEC and bounded disparity


## Summary

- Two PHY proposals tailored to reach low latency and long reach goals respectively
- Low gate count RS-FEC in both cases with similar 6 parity symbol structure
- Implementation efficient 5B3S and 7B4S codes - Bounded disparity guaranteed
- Friendly clock ratios for PLLs
- Common frontend for dual mode - simply scale the clock speed
- Minimal incremental cost for dual mode PHYs
- Next Steps:
- Make decision whether we have 2 different PHYs
- Do we want to baseline some portion of this proposal to put a stake in the ground?
- What additional evaluation is required?


## THANK YOU

