

IEEE P802.3dg 100BASE-T1L PHY PAM-3 Time Domain Simulations

Brian Murray Philip Curran Michal Brychta

Introduction

- The presentation compares time domain results of a 100BASE-T1L PHY architecture for PAM-3 using 4B3T and 8B6T coding
 - 100BASE-T1L results under the same conditions for PAM-3 4B3T and 8B6T with running disparity
 - Under the same conditions of cross-talk modelled with AWGN
- BB6T has a larger codebook of symbols which allows the selection of the set of code group symbols to improve the properties of the line code
 - 8B6T has 729 possible code groups, each of 6T symbols
 - It is easy to select 6T symbols with a disparity of 0 or pairs of 6T symbols with balanced disparity
 - 256 6T symbols or pairs of 6T symbols are required to represent 8 bits
 - A much larger code space is available than required just for running disparity leaving plenty of spare code groups for control codes like SSD,ESD
 - Greater flexibility in the code space to allows improved distance properties
- ▶ The results are compared using the AWGN Noise models for PHY Evaluation
 - zimmerman_3dgah_01b_01292024.pdf
 - This approximates to a flat AWGN Noise source at -113 dBm/Hz over 0 to 100 MHz for a 75 MSym/s baud rate which is 7 mV rms

Industrial Ethernet Noise Environment

- A 100BASE-T1L PHY has to cope with an Industrial Ethernet noise environment which has significant AWGN noise due to cross-talk which we model as -113 dBm/Hz which is 7.1 mV rms of noise
 - Simulations have shown that with any modulation scheme so far considered, dealing with this noise is a very significant challenge at 500m
 - The 100BASE-T1L PHY also has to cope with impulse noise originating from sources of Electrical Fast Transients
 - Results have been presented (<u>Brychta_3dg_update_B_2024-Mar-09</u>) that show that the amplitude of these
 impulse noise sources at the ADC in the PHY is at a level that errors will result at the slicer unless we can
 maximise the distance between the decision levels
 - The combination of moderate amounts of AWGN and impulse noise is an even bigger challenge
- PAM-3 maximizes the spacing of the decisions at the slicer to best deal with the combination of noise sources typical in Industrial Ethernet to minimize errors
 - The selection of the PAM-3 line code and the selection of the code group symbols within the code group space can be used to further improve the performance in the Industrial Ethernet noise environment
- PAM-4 modulation operates at a higher bit to symbol ratio, which allows error correction bits to be used by a FEC to correct decoded symbol errors
 - However, as PAM-4 reduces the spacing of the decisions at the slicer more errors occur than the FEC can correct

100BASE-T1L and Running Disparity

ANALOG DEVICES

- Running disparity is an important advantage for 10 and 100BASE-T1L
 - Running disparity is important to support Intrinsic Safety systems
 - Running disparity is important to limit the cost of external components in SPoE
 - Running disparity limits Base Line Wander which reduces the peak to mean at the ADC and improves the performance of the DFE
- The transmitter can use running disparity to control the properties of the transmit signal without adding any transmit analog complexity

PAM-3 Modulation Schemes and Bits/Symbol

- The theoretical limit of PAM-3 is 1.58 bits/symbol (without running disparity) which corresponds to 63 MSym/s at 100Mb/s
 - Many PAM-3 modulation schemes support running disparity at bits/symbol rates closer to the theoretical limit than the simple 4B3T scheme used in 10BASE-T1L

PAM-3 Modulation	Bits/Symbol	100Mb/s Symbol Rate (M)	2 ⁿ	Available Code Groups	Ratio CG/2 ⁿ	Running Disparity Bound	
3B2T	1.50	66.66	8	9	1.1	No	
4B3T	1.33	75.00	16	27	1.7	Yes ±1.5	
7B5T	1.40	71.43	128	243	1.9	Yes ±1.5	
8B6T	1.33	75.00	256	729	2.8	Yes ±1.0	
9B6T	1.50	66.66	512	729	1.4	No	
10B7T	1.43	71.43	1024	2187	2.1	Yes ±1.5	
13B9T	1.44	69.23	8192	19683	2.4	Yes ±1.0	
15B10T	1.50	66.66	32768	59047	1.8	Yes ±2.5	

- Operating at a higher bit/symbol ratio lowers the symbol rate and uses a better frequency range of the channel
- Choosing a line code with a greater ratio of available code groups gives greater flexibility in choosing codes
 - And there are many additional code groups available for control codes

- The big challenge of 100BASE-T1L is how to achieve sufficient performance margin at 500m in the Industrial Ethernet noise environment to meet a 10⁻¹⁰ bit error rate
 - Simulations have shown that the SNR margin using a standard DFE is not sufficient and some performance gain is required to have margin to the 10⁻¹⁰ bit error rate requirement
 - Choosing code groups with greater spacing between the code groups in the 6T code space results in a performance gain that can be used to achieve better bit error rate performance

Advantages of 8B6T Coding Scheme

- Using a PAM-3 modulation scheme with a higher number of symbols in the code group allows the design of a code to address these challenges
- A large ratio of available code groups to required code groups allows codes to be chosen to achieve particular desired properties of a code
 - For example, this can be used to achieve greater distance spacing between codes
- Some PAM-3 line codes like 10B7T, 13B9T and 15B10T have higher bits/symbol ratios than 4B3T, support running disparity and also can have greater spacing between the chosen code groups to achieve performance gain
- The 8B6T line code has a very high ratio of available codes to required codes giving a large space to choose code groups with a greater distance spacing between codes
 - We have considered 8B6T first as it has the highest ration of available codes to required codes

We constructed the a PAM-3 8B6T line code using the following set of 425 code groups chosen from the 729 available codes

8B6T Code Groups	Running Disparity	Number of Codes	Code Pairs	
Set O	0	87	87	
Set 1	1	79	79	
Set 2	2	58	58	
Set 3	3	32	32	
Set 1neg	-1	79		
Set 2neg	-2	58		
Set 3neg	-3	32		
Total Number of Codes		425	256	

Example of first 10 rows of the table

PAM3_	_8B6T									Change
Index	CG Row	Base_3	TA_n	TB_n	TC_n	TD_n	TE_n	TF_n	Pattern	RD+/-
0	222	022020	-1	1	1	-1	1	-1	-++-+-	0
1	506	200202	1	-1	-1	1	-1	1	++-+	0
2	510	200220	1	-1	-1	1	1	-1	+++-	0
3	542	202002	1	-1	1	-1	-1	1	+-+-+	0
4	546	202020	1	-1	1	-1	1	-1	+-+-	0
5	344	110202	0	0	-1	1	-1	1	00-+-+	0
6	348	110220	0	0	-1	1	1	-1	00-++-	0
7	380	112002	0	0	1	-1	-1	1	00++	0
8	384	112020	0	0	1	-1	1	-1	00+-+-	0
9	290	101202	0	-1	0	1	-1	1	0 - 0 + - +	0
10	294	101220	0	-1	0	1	1	-1	0 - 0 + + -	0

- The PAM-3 8B6T line code shown here is an example using a relatively small code space of 729 codes
 - We would not propose using 8B6T line code in 100BASE-T1L, but would propose using a similar approach with a higher order code like 10B7T, 13B9T and 15B10T to achieve a greater bits/symbol efficiency
 - 8B6T is used as an example to illustrate the concepts

100BASE-T1L PAM-3 Time Domain Simulation

- ▶ Compare 100BASE-T1L PAM-3 4B3T and 8B6T under the same conditions
- ► Generic 100BASE-T1L Architecture with following parameters
 - PAM-3 using 802.3cg Scrambler and 802.3cg 4B3T PCS with running disparity at 75 MSym/s
 - PAM-3 using 802.3cg Scrambler and 8B6T PCS with running disparity at 75 MSym/s
 - Ideal DAC & line driver, 2.4V Tx, 12-bit ADC
 - DFE using 48 feed forward taps and 64 feedback taps, ideal data path

▶ 802.3cg and 802.3dg Insertion Loss model

802.3dg IL	$IL(f) \leq \left(5.42 \times \sqrt{f} + 0.044 \times f + \frac{1.76}{\sqrt{f}}\right) + 5 \times 0.02 \times \sqrt{f}$	(dB)
802.3cg IL	$IL(f) \leq 10\left(1.23 \times \sqrt{f} + 0.01 \times f + \frac{0.2}{\sqrt{f}}\right) + 10 \times 0.02 \times \sqrt{f}$	(dB)

External Noise Model proposed in

- Noise with a Gaussian distribution and magnitude of -113 dBm/Hz
- 7 mV rms over a flat 100 MHz

Plot SNR versus external Gaussian noise

- For values of 3, 5, 7 and 9 mV rms
- For cable lengths 300, 400, 500 m
- For Insertion Loss cable model proposed for 802.3dg and IL model used in 802.3cg
- At 2.4V transmit level
- After 1546K symbols of start-up, idle and data (~ 20000 μ s)
 - Enter data after 240K symbols
- ► Compare 100BASE-T1L PAM-3 4B3T with 8B6T with running disparity
 - 75 MSym/s PAM-3 4B3T
 - 75 MSym/s PAM-3 8B6T

► Generic block diagram of a BASE-T PHY architecture

A time domain simulation is run for a range of cable lengths / noise to determine SNR margin verses reach

Other example PHY architecture diagrams 10BASE-T1L .cg Jan 2017 Graber_10SPE_10_0117.pdf

SNR verses BER or Packet Error Rate

▶ 802.3dg standard mandates a BER $\leq 10^{-10}$

- PAM-3 4B3T coding has a symbol power of 0.64422 and requires an SNR of 20.2 dB for a BER $\leq 10^{-10}$
- PAM-4 4B2T coding has a symbol power of 0.55555 and requires an SNR of 23.0 dB for a BER $\leq 10^{-10}$

100BASE-T1L PAM-38B6T 802.3dg IL - 400m / 5 mV rms Noise

100BASE-T1L PAM-38B6T802.3dg IL - 500m / 9 mV rms Noise

100BASE-T1L PAM-38B6T 802.3cg IL - 500m / 7mV rms Noise

10000 Symbol Time (us)

100BASE-T1L SNR vs Ext Noise – PAM-3 dg IL Model

100BASE-T1L 75 MSym/s PAM-3 4B3T and 8B6T: SNR versus External Noise – 2.4V Tx Amplitude

100BASE-T1L SNR vs Ext Noise – PAM-3 cg IL Model

100BASE-T1L 75 MSym/s PAM-3 4B3T and 8B6T: SNR versus External Noise – 2.4V Tx Amplitude

- PAM-3 coding meets the reach requirements of 500 m on the proposed link segment specifications with some SNR margin
- PAM-3 has the advantage of wider spacing of decision thresholds which gives the greatest immunity to impulse noise
- PAM-3 coding with higher order codes can give higher bit/symbol efficiency and performance gain due to greater spacing between the chosen code groups
- PAM-3 coding schemes can be implemented with low latency by adopting similar approaches to other low speed PHYs like 10BASE-T1L and embed the control codes in the constellation

Questions?