Remote Fault Handling

12 March 2025

Problem Statement

- Assuming Murray_3dg_01_03122025 option B adopted
- Murray_3dg_01_03122025 slide 11 shows a linkup sequence of Local Fault → Idle → Remote Fault → Idle
- For XGMII the linkup sequence is a bit cleaner
 Local Fault → Remote Fault → Idle
- This presentation makes some suggestions to alter Murray_3dg_02_03122025 to make MII behave a little cleaner Local Fault → Remote Fault → Idle

Murray 3dg 01 03122025 Slide 11

Local Fault \rightarrow Idle \rightarrow Remote Fault \rightarrow Idle \bullet

IEEE 802.3dg Iask Force

How Reconciliation Sublayer Handle Local and Remote Faults

- See Local Fault on RXD → Sent Remote Fault on TXD
- See Remote Fault on RXD → Sent Idles on TXD
- Else TXD free to transmit data

How XGMII Works

- PHY A RXD (LF) → PHY A TXD (RF) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (LF) ← (not linked up) ← PHY B TXD (RF) ← PHY B RXD (LF)
- Assume PHY A links up first
- PHY A RXD (RF) → PHY A TXD (Idle) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (RF) ← (linked up) ← PHY B TXD (RF) ← PHY B RXD (LF)
- PHY A RXD (Idle) → PHY A TXD (Idle) → (linked up) → PHY B RXD (Idle)
 PHY A RXD (Idle) ← (linked up) ← PHY B TXD (Idle) ← PHY B RXD (Idle)

Either LF \rightarrow RF \rightarrow Idle or LF \rightarrow Idle. RF is an indicator that link partner is not ready.

How 100BASE-T1L Works

- Does not rely on directly passing remote fault sequence ordered set to indicate link partner is not ready.
- Uses loc_phy_ready = NOT_OK or OK in the block code instead of a sequence ordered set

Proposed Modifications

 No change to the encoding to Murray_3dg_01_03122025 slide 10.

TX_EN	TX_ER	TXD<3:0>	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Reserved
0	1	0001	Assert LPI
0	1	0010	PLCA BEACON request
0	1	0011	PLCA COMMIT request
0	1	0100	Assert remote fault
0	1	0101 through 1111	Reserved
1	0	0000 through 1111	Normal data transmission
1	1	0000 through 1111	Transmit error propagation

Table 22–1—Permissible encodings of TXD<3:0>, TX_EN, and TX_ER

Table 22–2—Permissible encodings of RXD<3:0>, RX_ER, and RX_DV

RX_DV	RX_ER	RXD<3:0>	Indication	
0	0	0000 through 1111	Normal inter-frame	
0	1	0000	Normal inter-frame	
0	1	0001	Assert LPI	
0	1	0010	PLCA BEACON indication	
0	1	0011	PLCA COMMIT indication	
0	1	0100	Assert remote fault	
0	1	0101	Assert local fault	
0	1	0110 through 1101	Reserved	
0	1	1110	False Carrier indication	
0	1	1111	Reserved	
1	0	0000 through 1111	Normal data reception	
1	1	0000 through 1111	Data reception with errors	

Proposed Modifications

- Change the encoding to Murray_3dg_02_03122025 slide 10.
- NOT_RDY map to RF and not to Idle.

(i.e. tx_enable = 0, tx_error = 1, TXD = 0100)

Ca	itegory	tx_enable	tx_error	TXD<3:0>	Description
\mathcal{F}		loc_phy_ready = FALSE			
NC	DT_RDY	-	-	_	PHY not ready for MII transfer
+		loc phy_ready = TRUE			
DA	ΔT	1	0	-	Normal data transmission
ER	R	1	1	-	Transmit error propagation
NI	F	0	0	_	Normal inter-frame
AL	PI	0	1	0001	Assert LPI
AR	łF	0	1	0100	Assert remote fault
ID	L	0	_	_	

Table 199–1— MII transfer categories

Table 199–3— TOCT symbol to TOCT value mapping

Proposed Optional Modification

• /Q/ Set to reserved

 /Ix/ Normal Inter-Frame, loc_phy_ready = NOT_OK or assert remote fault

- No more control symbols left
- Save /Q/ for future development

	TOCT Definition Symbol		TOCT Value	
/Q/		Assert remote fault	0x00	₿
	/E/	Transmit Error Propagation	0x10	
	/I/	Normal Inter-Frame, loc_phy_ready = OK	0x08	
	/Su/	Start of packet on odd nibble	0x18	
	/Tp/	End of packet after odd nibble	0x04	
	/L/	Assert LPI	0x14	
	/Ix/	Normal Inter-Frame, loc_phy_ready = NOT_OK	0x0C	Þ
	/Sp/	Start of packet on even nibble	0x1C	
	/Tu0/	End of packet after even nibble, last data nibble = $0x0$	0x01	
	/Tu8/	End of packet after even nibble, last data nibble = $0x8$	0x11	
	/Tu4/	End of packet after even nibble, last data nibble = $0x4$	0x09	
	/TuC/	End of packet after even nibble, last data nibble = $0xC$	0x19	
	/Tu2/	End of packet after even nibble, last data nibble = $0x2$	0x05	
	/TuA/	End of packet after even nibble, last data nibble = $0xA$	0x15	
	/Tu6/	End of packet after even nibble, last data nibble = $0x6$	0x0D	
	/TuE/	End of packet after even nibble, last data nibble = $0xE$	0x1D	
	/Tu1/	End of packet after even nibble, last data nibble = $0x1$	0x03	
	/Tu9/	End of packet after even nibble, last data nibble = $0x9$	0x13	
	/Tu5/	End of packet after even nibble, last data nibble = $0x5$	0x0B	
	/TuD/	End of packet after even nibble, last data nibble = $0xD$	0x1B	
	/Tu3/	End of packet after even nibble, last data nibble = $0x3$	0x07	
	/TuB/	End of packet after even nibble, last data nibble = $0xB$	0x17	
	/Tu7/	End of packet after even nibble, last data nibble = $0x7$	0x0F	
	/TuF/	End of packet after even nibble, last data nibble = $0xF$	0x1F	

How MII Works with Modification

- PHY A RXD (LF) / PHY A TX PCS (not ready) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (LF) ← (not linked up) ← PHY B TX PCS (not ready) / PHY B RXD (LF)
- Assume PHY A links up first
- PHY A RXD (RF) → PHY A TXD (Idle) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (RF) ← (linked up) ← PHY B TX PCS (not ready) / PHY B RXD (LF)
- PHY A RXD (Idle) → PHY A TXD (Idle) → (linked up) → PHY B RXD (Idle)
 PHY A RXD (Idle) ← (linked up) ← PHY B TXD (Idle) ← PHY B RXD (Idle)

How MACs that don't support LF and RF

• Unrecognized codes are interpreted as idles

• So mechanism is backwards compatible

How MII Works with Modification – MACs without RS Support

PHY A TX PCS (not ready) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (LF) ← (not linked up) ← PHY B TX PCS (not ready)

Assume PHY A links up first

- PHY A TXD (Idle) → (not linked up) → PHY B RXD (LF)
 PHY A RXD (RF) ← (linked up) ← PHY B TX PCS (not ready)
- PHY A TXD (Idle) → (linked up) → PHY B RXD (Idle)
 PHY A RXD (Idle) ← (linked up) ← PHY B TXD (Idle) ← PHY B RXD (Idle)

THANK YOU

