

IEEE P802.3dg 100BASE-T1L PHY PAM-3 8B6T Partial Response with Bounded Running Disparity Time Domain Simulations

Brian Murray Philip Curran

- This a presentation of time domain simulation results of a 100BASE-T1L PHY architecture using PAM-3 8B6T coding with partial response (PR) and bounded running disparity
 - The simulations are run under the same conditions as previous time domain simulation results by the authors
 - Alien cross-talk is modelled with AWGN
- 8B6T has a larger codebook of available symbols which allows the selection of the set of code group symbols to improve the properties of the line code
 - <u>curran_3dg_01_05132024</u> has given the background to this code, its construction and properties
 - In particular, the one-to-one mapping from the PR sequences to the 6D ternary code group which eliminates error propagation
 - The $\sqrt{2}$ minimum distance between any two PR sequences to allow an effective SNR gain of up to 3 dB
 - The code has 256 6T data symbols / pairs of 6T symbols with balanced running disparity
 - Additional codes are available for control codes and idle
- ▶ The time domain simulation uses the AWGN Noise models for PHY Evaluation
 - zimmerman_3dgah_01b_01292024
 - This approximates to a flat AWGN Noise source at -113 dBm/Hz over 0 to 100 MHz for a 75 MSym/s baud rate which is 7 mV rms

- The big challenge of 100BASE-T1L is how to achieve sufficient performance margin at 500 m in the Industrial Ethernet noise environment to meet a 10⁻¹⁰ bit error rate
 - Previous simulations have shown that the SNR margin using a standard DFE is not sufficient and some performance gain is required to have margin to the 10⁻¹⁰ bit error rate requirement
 - The nature of the channel is approximately (1 + D); at longer lengths and higher noise the 1st tap of the DFE becomes larger that 0.5 and can be even greater than 1.0 resulting in error propagation
- The 8B6T partial response code has properties to address both of these challenges

100BASE-T1L PAM-3 Time Domain Simulation

- I00BASE-T1L PAM-3 8B6T with partial response (PR) and bounded running disparity
- ► Generic 100BASE-T1L Architecture with following parameters
 - PAM-3 using the 802.3cg Scrambler and 8B6T PCS with running disparity at 75 MSym/s
 - Ideal DAC & line driver, 2.4V Tx, 12-bit ADC
 - DFE using 48 feed forward taps and 64 feedback taps, ideal data path
- ▶ 802.3cg and 802.3dg Insertion Loss model

802.3dg IL	$IL(f) \leq \left(5.42 \times \sqrt{f} + 0.044 \times f + \frac{1.76}{\sqrt{f}}\right) + 5 \times 0.02 \times \sqrt{f}$	(dB)
802.3cg IL	$IL(f) \leq 10\left(1.23 \times \sqrt{f} + 0.01 \times f + \frac{0.2}{\sqrt{f}}\right) + 10 \times 0.02 \times \sqrt{f}$	(dB)

- External Noise Model proposed by <u>zimmerman</u>
 - Noise with a Gaussian distribution and magnitude of –113 dBm/Hz
 - 7 mV rms over a flat 100 MHz

Plot SNR versus external Gaussian noise

- For values of 3, 5, 7 and 9 rms
- For Insertion Loss model proposed for 802.3dg and IL model used in 802.3cg
 - For cable lengths 300, 350, 400, 450, 475 and 500 m derived from a scaled IL model
 - Scaling relative to the Insertion Loss model will be worse than a typical cable model
- At 2.4V transmit level
- After 1536K symbols of start-up, idle and data (~ 20000 μs)
 - Enter data after 300K symbols

► Generic block diagram of a BASE-T PHY architecture

A time domain simulation is run for a range of cable lengths / noise to determine SNR margin verses reach

Other example PHY architecture diagrams 10BASE-T1L <u>.cg Jan 2017 Graber_10SPE_10_0117.pdf</u>

SNR versus BER or Packet Error Rate

- ▶ 802.3dg standard mandates a BER $\leq 10^{-10}$
 - The PAM-3 8B6T partial response ternary code has an idle symbol power of 0.7122*
 - The probability of an error at the ternary slicer of a conventional DFE is 1.2982 $\times 0.5 \times \operatorname{erfc}\left(\frac{1}{2\sqrt{2}\sigma}\right)$
 - The probability of an error at the quinary slicer of a partial response DFE is 1.7818 $\times 0.5 \times \operatorname{erfc}\left(\frac{1}{2\sqrt{2}\sigma}\right)$
 - The ratio of the mse noise to meet a BER $\leq 10^{-10}$ to the idle symbol power measured in dB is 20.6 dB and 20.7 dB
 - Including an effective SNR gain of 2.8 dB using Maximum Likelihood the SNR target for a BER \leq 10⁻¹⁰ is **17.9 dB**

100BASE-T1L PAM-38B6T 802.3dg IL - 500m / 9 mV rms Noise

100BASE-T1L SNR vs Ext Noise – PAM-3 dg IL Model

100BASE-T1L 75 MSym/s 8B6T PR: SNR versus External Noise – 2.4V Tx Amplitude

- Simulations are run for both conventional and PR DFE
 - A Ternary slice and conventional DFE including the 1st tap to decode each 1T symbol
 - A partial response DFE using a Quinary slice and lookup table to decode the 6T symbol
- Identical results are achieved for both approaches when there are no symbol errors
 - At marginal SNR very small differences are observed between the two approaches when there are symbol errors due to the effect of error propagation
 - The partial response DFE using a Quinary slice has lower error propagation between 6T symbols
 - An example of a longer simulation run of 320 ms of data at 18 dB of SNR (9 mV rms) where the conventional DFE had 29 error events and a total of 46 errors with 17 error events with error propagation by 1 or 2; in this case about 55% of the errors propagate
 - With a PR DFE and Quinary slice, the 17 error propagating events reduced to 3 cases of error propagation by 1; in this case about 10% of the error propagate

100BASE-T1L SNR vs Ext Noise – PAM-3 dg IL Model

100BASE-T1L 75 MSym/s 8B6T PR: SNR versus External Noise – 2.4V Tx Amplitude

100BASE-T1L SNR vs Ext Noise – PAM-3 cg IL Model

100BASE-T1L 75 MSym/s PAM-3 4B3T and 8B6T: SNR versus External Noise – 2.4V Tx Amplitude

- Summary
- PAM-3 coding using 8B6T with partial response meets the reach requirements of 500 m on the proposed link segment specifications with over 2 dB of SNR margin
- PAM-3 has the advantage of wider spacing of decision thresholds which gives the greatest immunity to impulse noise
- ▶ PAM-3 8B6T with partial response has the advantage of up to 3 dB of effective SNR gain due to the $\sqrt{2}$ minimum distance between any two partial response sequences
- PAM-3 coding schemes can be implemented with very low latency by adopting similar approaches to other PHYs like 10BASE-T1L and 1000BASE-T and embed the control codes in the constellation

Questions?