

## Legacy MAC Interfaces for 10/100/1000 PHYs and Link Fault Conditions

Brian Murray, Jacobo Riesco, Philip Curran

Analog Devices, Inc., IEEE 802.3dg Task Force, September 2024

### Existing Silicon and Legacy MAC Interfaces



- The IEEE standards define MII and GMII MAC interface for PHYs operating at 10, 100 and 1000 Mb/s speeds
  - MII is defined in Clause 22 and supports 10 Mb/s and 100 Mb/s operation
  - GMII is defined in Clause 35 and supports 1000 Mb/s operation
  - These clauses define the logical operation of the signals at the interface
- ▶ In theory this is the interface between a PHY chip and a MAC chip
  - And in early implementations of PHYs this was also the actual chip interface
  - The first/second generation of Gigabit PHYs were in 128-pin TQFP 14 x 20 mm packages supporting a 25-pin GMII interface
- In practice with actual silicon today and for the last 25 years, industry standard, lower pin count MAC / PHY interfaces are used
  - Some 100M Industrial Ethernet PHYs do continue to support MII at the pins as this interface has the lowest latency which is important for some Industrial Ethernet protocols
    - Even then COL / CRS / RX\_ER are not always brought out or they are shared pins
  - But these PHYs also support the industry standard, lower pin count MAC / PHY interfaces

### Industry Standard Lower Pin Count MAC / PHY Interfaces

- The high pin count of MII / GMII and the drive for smaller packages resulted in the introduction of lower pin count MAC interfaces, e.g. RMII, RGMII and SGMII
  - These interface trade bus speed for pin count
  - Multi-port PHYs drove higher SerDes speeds so multiple ports could be combined on a single 4-pin SerDes interface, for example QSGMII, USGMII and USXGMII

#### Industry Standard MAC / PHY Interfaces

Potterf\_MII\_Proposals\_Expansion\_2024-03-12 is an excellent detailed review of these MAC interfaces

| MAC Interface | Data/Control<br>Pins | Bus Clock Rate | Clocking           | Mgt Pins<br>(MDIO) | Ports |                                                                  |
|---------------|----------------------|----------------|--------------------|--------------------|-------|------------------------------------------------------------------|
| RMII          | 8                    | 50 MHz         | System Synchronous | 2                  | 1     | <b>}←</b> Most common MAC/PHY chip interface for Single 100M PHY |
| RGMII         | 12                   | 125 MHz        | Source Synchronous | 2                  | 1     | Most common MAC/PHV chin interfaces for Single 1G PHVs           |
| SGMII         | 4                    | 1.25 GHz       | SerDes             | 2                  | 1     |                                                                  |
| QSGMII        | 4                    | 5 GHz          | SerDes             | 2                  | 4     | <b>}←</b> Most common MAC/PHY chip interface for Quad 1G PHYs    |
| USGMII        | 4                    | 10 GHz         | SerDes             | 2                  | 1/4/8 | <b>}</b> ← Most common MAC/PHY chip interface for Octal 1G PHYs  |
| UXSGMII       | 4                    | 10 GHz         | SerDes             | 2                  | 1/4/8 |                                                                  |
| MII           | 16                   | 25 MHz         | PHY Synchronous    | 2                  | 1     | Rarely available at chip pins                                    |
| GMII          | 25                   | 125 MHz        | Source Synchronous | 2                  | 1     |                                                                  |

A Link Status pin from PHY to MAC is commonly provided at the chip interface for single PHYs.

### Industry Standard MAC Interfaces and In-Band Signalling

- Industry standard MAC interfaces can use in-band signalling to transfer information about the link to the MAC
  - RGMII defined optional in-band signalling for Link Status, Speed/Duplex
  - SGMII uses clause 36 (1000BASE-X) to support Link Status, Speed/Duplex signalling
  - However, many existing silicon single PHY to MAC interfaces do not uses these signals

|                    | In-band / Clause 36 |                        |           |  |  |  |  |
|--------------------|---------------------|------------------------|-----------|--|--|--|--|
| MAC Interface      | Link Status         | ANEG<br>(Speed/Duplex) | EEE - LPI |  |  |  |  |
| RMII               | No                  | No                     | No        |  |  |  |  |
| RGMII <sup>1</sup> | Yes                 | Yes                    | Yes       |  |  |  |  |
| SGMII              | Yes                 | Yes                    | Yes       |  |  |  |  |
| QSGMII             | Yes                 | Yes                    | Yes       |  |  |  |  |
| USGMII             | Yes                 | Yes                    | Yes       |  |  |  |  |
| UXSGMII            | Yes                 | Yes                    | Yes       |  |  |  |  |
| MII                | No                  | No                     | Yes       |  |  |  |  |

<sup>1</sup> RGMII uses optional In band signalling for Link Status, Speed/Duplex. *Typically single PHYs have a dedicated Link Status Pin.* 

| Config_Reg encoding for SGIVIII/USGIVIII/USXGIVIII |                 |      |        |                          |      |      |       |          |                                      |       |     |        |      |      |      |
|----------------------------------------------------|-----------------|------|--------|--------------------------|------|------|-------|----------|--------------------------------------|-------|-----|--------|------|------|------|
| LSB                                                |                 |      |        |                          |      |      | -     |          |                                      |       |     |        |      |      | MSB  |
| D0                                                 | D1              | D2   | D3     | D4                       | D5   | D6   | D7    | D8       | D9                                   | D10   | D11 | D12    | D13  | D14  | D15  |
| 1                                                  | rsvd            | rsvd | rsvd   | rsvd                     | rsvd | rsvd | EEEcs | EEEen    |                                      | SPEED |     | Duplex | rsvd | rsvd | Link |
|                                                    |                 |      |        |                          |      |      |       |          |                                      |       |     |        |      |      |      |
| Co                                                 | ode Ordered Set |      |        | Number of<br>Code-Groups |      |      |       | Encoding |                                      |       |     |        |      |      |      |
| /C/                                                | Configuration   |      |        |                          |      |      |       | A        | Alternating /C1/ and /C2/            |       |     |        |      |      |      |
| /C1/                                               | /               | Co   | nfiour | ation                    | 1    | 4    |       |          | /K28 5/D21 5/Config Reg <sup>a</sup> |       |     |        |      |      |      |

/K28.5/D2.2/Config Reg<sup>a</sup>

/K28.5/D5.6/

/K28.5/D16.2/

Correcting /I1/, Preserving /I2/

Table 36–3—Defined ordered sets

IEEE Std 802.3-2022, IEEE Standard for Ethernet

Reference: Cisco USGMII Functional Specification: EDCS-1155168, Rev 4.2

4

2

2

**Configuration 2** 

IDLE

IDLE 1

IDLE 2

/C2/

/I/

/I1/

/I2/

### Industry Standard MAC Interfaces and In-Band Signalling

- Industry standard MAC interfaces can use in-band signalling to transfer information about the link to the MAC
  - RGMII defined optional in-band signalling for Link Status, Speed/Duplex
  - SGMII uses clause 36 (1000BASE-X) to support Link Status, Speed/Duplex signalling
  - However, many existing silicon single PHY to MAC interfaces do not uses these signals

|                    |             | In-band / Clause 36    | 5         | Sequenced               | РСН                   |                         |
|--------------------|-------------|------------------------|-----------|-------------------------|-----------------------|-------------------------|
| MAC Interface      | Link Status | ANEG<br>(Speed/Duplex) | EEE - LPI | Local / Remote<br>Fault | Link Interruption     | Time<br>Synchronization |
| RMII               | No          | No                     | No        | No                      | No                    | No                      |
| RGMII <sup>1</sup> | Yes         | Yes                    | Yes       | Possible <sup>2</sup>   | Possible <sup>2</sup> | No                      |
| SGMII              | Yes         | Yes                    | Yes       | No                      | No                    | No                      |
| QSGMII             | Yes         | Yes                    | Yes       | No                      | No                    | No                      |
| USGMII             | Yes         | Yes                    | Yes       | No                      | No                    | Yes <sup>3</sup>        |
| UXSGMII            | Yes         | Yes                    | Yes       | Yes                     | No                    | Yes <sup>3</sup>        |
| МІІ                | No          | No                     | Yes       | Possible <sup>4</sup>   | Possible <sup>4</sup> | No                      |

None of the commonly used MAC interfaces support sequence ordered sets and cannot transfer Local / Remote Fault or Link Interruption

<sup>1</sup> RGMII uses optional In band signalling for Link Status, Speed/Duplex.

Typically single PHYs have a dedicated Link Status Pin.

<sup>2</sup> RGMII can disable in-band signalling and could then use sequence ordered sets to indicate Remote Fault and Link Interruption, but cannot then indicate Link Status or ANeg information. *RMII, SGMII, QSGMII, USGMII cannot support sequenced ordered sets*.

<sup>3</sup> USGMII/USXGMII use a Packet Control Header during Idle to send PTP Timestamps. *Industrial Ethernet single PHYs use Tx/Rx SOP pins*.

<sup>4</sup> MII could use sequenced ordered sets to indicate Remote Fault and Link Interruption, but no existing silicon supports this.

Analog Devices, Inc., IEEE 802.3dg Task Force, September 2024

### Existing Silicon and Remote Fault



- There are some MAC interfaces (USXGMII) that support the transfer of Local / Remote Fault over the MAC interface
  - However, it appears that existing silicon does not use this signalling
  - And USXGMII does not support the transfer of Link Interruption
- The 1000BASE-T standard had loc\_rcvr\_status / rem\_rcvr\_status variables and the standard requires that the PHY does a retrain if these are NOT\_OK
  - However, there is no means to communicate this back to the MAC over the interface and consequently any data sent from the MAC to the PHY during retrain is dropped
  - There is no reliable means to communicate loss of receiver performance to the link partner
  - In our experience retrain just delays the inevitable dropping of the link and restart of Auto-Neg and in practice just adds to the time taken to re-establish reliable communication
- ▶ We believe the original intention of retrain was to avoid the 1.3s break link
  - Clause 98 Auto-Negotiation is much, much faster
    - The break\_link\_timer\_[LSM] is 8 ms and the break\_link\_timer\_[HSM] is 350 μs

#### Proposed Handling of Link Fault Conditions in 100BASE-T1L



- For 100BASE-T1L we propose to drop the link and restart Auto-Negotiation as soon as the local PHY detects that the receiver status is bad
  - Therefore, we don't need to communicate link fault to the RS because it is communicated via link\_status to the MAC
    - link\_status is a parameter passed to the technology dependent interface (see 98.4.1.1) but should be communicated alongside MII
    - In practice, Clause 36 is used for SGMII/USGMII and a Link Status pin for Industrial Ethernet single PHYs
  - The link partner detects that the link has dropped as our signal disappears
  - We don't need to and cannot communicate sequence ordered sets to the link partner because we have restarted Auto-neg
  - When the link degrades there is no reliable mechanism to communicate link status information to the link partner
- ▶ We propose to have a fast link time
  - Time to establish link including Auto-Neg should be less than 100 ms
  - A fast link time removes the need for a retrain
- We believe this method will be the most robust and fastest means to recover from a severe link disturbance

#### Sequence Ordered Sets and Remote Fault



- At the July meeting the 802.3dg group approved a motion to adopt adding sequence ordered sets to the MII interface
  - This is to support signalling from the PHY to the MAC
  - But none of the existing 100M silicon or commonly used MAC interfaces support Sequence Ordered Sets
- ► We could add sequence ordered sets to a new MII interface
  - This would be to communicate from the PHY to the MAC
  - A new MII should communicate link\_status and speed / duplex to the MAC
  - We do not want to add sequence ordered sets to support undefined capability for future definition

# **Questions**?