

Proposal for Constant Latency MII to 8N/8N+1 Encoding in the 100BASE-T1L PCS

Brian Murray Jacobo Riesco Philip Curran

Motion #n

Move that the IEEE P802.3dg Task Force adopt slides 3 to 8 + 10 of Murray_3dg_01_11132024.pdf

M: Brian Murray

S:

Technical (>75%)

This a proposal for the constant latency MII to 8N/8N+1 encoding used in the 100BASE-T1L PCS

Control Codes and Mode Encoding/Decoding Table

M(n)[0] = 1

3	4	5	6	7		
Mode M(n)[0:1]		Control Code C(n)[0:2]			Symbol	Definition
0	-	0	0	0	Q	Sequence Ordered Set Control Code
0	-	0	0	1	E	Transmit Error Propagation
0	-	0	1	0	I	Normal Inter-Frame (Idle) with loc_phy_ready = OK
0	-	0	1	1	Su	Start of Packet with leading Idle/LPI
0	-	1	0	0	Тр	End of Packet
0	-	1	0	1	L	Assert Low Power Idle (LPI)
0	-	1	1	0	lx	Normal Inter-Frame (Idle) with loc_phy_ready = NOT_OK
0	-	1	1	1	Sp	Start of Packet
1	0	0	0	0	TuD0	Dribble Nibble, Data = 0x0
1	0	0	0	1	TuD8	Dribble Nibble, Data = 0x8
1	0	0	1	0	TuD4	Dribble Nibble, Data = 0x4
1	0	0	1	1	TuDC	Dribble Nibble, Data = 0xC
1	0	1	0	0	TuD2	Dribble Nibble, Data = 0x2
1	0	1	0	1	TuDA	Dribble Nibble, Data = 0xA
1	0	1	1	0	TuD6	Dribble Nibble, Data = 0x6
1	0	1	1	1	TuDE	Dribble Nibble, Data = 0xE
1	1	0	0	0	TuD1	Dribble Nibble, Data = 0x1
1	1	0	0	1	TuD9	Dribble Nibble, Data = 0x9
1	1	0	1	0	TuD5	Dribble Nibble, Data = 0x5
1	1	0	1	1	TuDD	Dribble Nibble, Data = 0xD
1	1	1	0	0	TuD3	Dribble Nibble, Data = 0x3
1	1	1	0	1	TuDB	Dribble Nibble, Data = 0xB
1	1	1	1	0	TuD7	Dribble Nibble, Data = 0x7
1	1	1	1	1	TuDF	Dribble Nibble, Data = 0xF

- M(n)[0:1] = 00 No more control codes
- ► M(n)[0:1] = 01 More control codes
 - 16 x Tu control codes
 - More control codes implied

* From <u>Lo_3dg_01a_0724</u> Modified

Sequence Ordered Sets

- Optional support for sequence ordered sets
- SEQen bit added to the InfoField to allow support for sequence ordered sets to be negotiated with the link partner
 - If either link partner has SEQen = 0 then sequence ordered sets are disabled
- ▶ If sequence ordered sets are disabled
 - If the PHY receives a sequence ordered set on the MII the PHY Tx will encode it as Idles
 - If the PHY Rx receives a sequence ordered set control code (Q) at the decoder, this is not expected or supported and is treated like any other error
 - Following the error handling rules in such cases a False Carrier will be signalled at the MII
- If sequence ordered sets are enabled, they are transparently conveyed between the local and remote MII

Normal Inter-Frame (Idle)

- ► Keep two versions of Normal Inter-Frame
 - I when loc_phy_ready = OK or Ix when loc_phy_ready = NOT_OK
 - As in Clause 97
- Normal Inter-Frame encoding indicates whether the PHY is ready to receive data or not (loc_phy_ready = OK/NOT_OK)
 - Decoded as rem_phy_ready = OK/NOT_OK in the link partner
 - Synchronizes link_status = OK between link partners
 - Cannot rely on sequence ordered sets for this synchronization as existing MACs do not support them

Encoding Rules for Error Handling

- Packets are delimited with Start of Packet and End of Packet symbols
 - Sp symbol used for packets starting on even cycles aligned
 - Su (was Cs) for packet starting on odd cycles unaligned
 - The start of packet is always encoded using Sp or Su
 - If transmit error propagation is encoded at the MII during the start of packet, an error is encoded in the following octet
 - **Tp** symbol used for packets ending on even cycles aligned
 - 16 x **Tu** (was CD) symbols for packets ending on odd cycles unaligned
 - The end of packet is always encoded using Tp or Tu

Decoding Rules for Error Handling

- PCS receive functions or Multi-G RS functions are incorporated into the PHY decoder
 - RX_DV will be asserted in response to the reception of a start of packet control code if the previous nibble was a normal inter-frame
 - RX_DV will be de-asserted when a control code other than an error is received
 - When RX_DV is de-asserted because of a control code other than end of packet, RX_ER will be asserted before RX_DV is de-asserted
 - If a symbol other than Idle, LPI, start of packet or sequence ordered set control code (if supported), is received following an idle nibble or a sequence ordered set (if supported), then a false carrier indication is encoded onto the MII RX
 - False carrier is held until an Idle, LPI or a sequence ordered set control code (if supported) is received
 - This is the same as 100BASE-X, 1000BASE-X, 1000BASE-T, 100BASE-T1, 10BASE-T1L and 10BASE-T1S (Clauses 24, 36, 40, 96, 146 and 147)

8N/(8N+1)Encoding

Defined by the following pseudo-code (Modifications from Clause 97, per Lo_3dg_01a_0724), where N is the number of octets encoded in a block

- N = 8 when the Reed-Solomon FEC is used and N = 2 when it is not used
- Octets within a block are numbered using and increasing index n, from 0 to N-1, with n = 0 being the first octet of the block presented on the MII interface.

TC[n]	: 0 if octet n is e	ncoded as a data packet octet (the octet n contains two MII data nibbles, TXD[2n][0:3] and TXD[2n+1][0:3]); 1 otherwise.						
TC[-1]	: 1 by definition							
TD[n][0:7]	: MII octet n (TD[n][0:3]=TXD[2n][0:3], TD[n][4:7]=TXD[2n+1][0:3]) if TC[n]=0							
B[0:8N]	: 8N+1 block. Bit 0 transmitted first							
OR(n)	: Bitwise OR of TC[n:N-1]							
OR(N)	: 0 by definition							
NEXT(n)[0:2]	: Bit position of	lowest bit in TC[n:N-1] that is a 1. Bit 2 is MSB						
C(n)[0:2]	: MII control code n, corresponding to MII data nibbles 2n, 2n+1 as per control codes and mode encoding table							
M(n)[0:1]	: MII mode n, corresponding to MII data nibbles 2n, 2n+1 M(n)[0] = 1 if encoded symbol is CD; else 0 M(n)[1] = TXD[2n][0] if encoded symbol is CD; else OR(n+1)							
B[0]	= OR(0)							
B[8n+1:8n+3]	= TD[n][0:2] NEXT(n)[0:2] TD[n-1][5:7]	if OR(n) = 0 else if TC[n-1] = 1 else						
B[8n+4:8n+5]	= TD[n][3:4] M(n)[0:1] TD[n][0:1]	if OR(n) = 0 else if TC[n] = 1 else						
B[8n+6:8n+8]	= TD[n][5:7] C(n)[0:2] TD[n][2:4]	if OR(n) = 0 else if TC[n] = 1 else						

8N/(8N+1) Encoding – Proposed Text

This text is taken from page 8 of Lo_3dg_01b_1124 The N octets are mapped to 8N+1 bits as described in the following pseudo code, where N = 2 for low latency mode and N = 8 for long reach mode.

N = number of octets encoded into block. Octets numbered $n = 0, \frac{1, 2, \dots}{N-1}$.

octet 0 is the first one presented to the encoder.

octet -1 is by definition not a Tu* symbol $\underline{TC[-1]} = 1$ by definition if octet n is a data symbol and octet n-1 is not a Tu* symbol then TC[n] = 0else TC[n] = 1NEXT(n)[0:2] = bit position of lowest bit in TC[n:N-1] that is a 1. Bit 2 is MSB. NEXT(n)[4] = 0 if Bitwise SUM of TC[n:N-1] = 1, else 1 if TC[n] = 1 then TD[0:2] is undefined if octet n is one of the Tu* symbols then $TD[n][3:7] = \{Mode[0:1], Control[0:2] of the corresponding control$ symbol as defined in Table ZZZ-B. else TD[n][4] = NEXT(n)[4] $TD[n][3, 5:7] = \{Mode[0], Control[0:2]\}$ of the corresponding control symbol as defined in Table ZZZ-B. else TD[n][0:7] = octet n {first nibble TXD[0:3], second nibble TXD[0:3]} B[0:8N] is the 8N+1 block. Bit 0 transmitted first. OR(n) = Bitwise OR of TC[n:N-1] $\underline{B[0]} = OR(0)$ B[8n+1:8n+3] = TD[n][0:2] - if OR(n) = 0NEXT (n) [0:2] - if OR(n) = 1 AND TC[n-1] = 1TD[n-1][5:7] - if OR(n) = 1 AND TC[n-1] = 0B[8n+4:8n+8] = TD[n][3:7] - if OR(n) = 0TD[n][3:7] - if OR(n) = 1 AND TC[n] = 1TD[n][0:4] - if OR(n) = 1 AND TC[n] = 0

Editor's Note:

l do not think an equivalent to clauses 97.3.2.2.6 is needed since this is concisely covered as a combination in Tables ZZZ-A and ZZZ-B.