

NEA MII Presentation Planning

Collaborative Development of an NEA Presentation

Jason Potterf
Affiliated with Cisco
2024-07-15

Goals for this Presentation

- Share starting point for an NEA presentation slide deck
- Recruit input on incomplete sections
- Recruit participants to join an Ad Hoc on Tuesday

A New MII for the Future

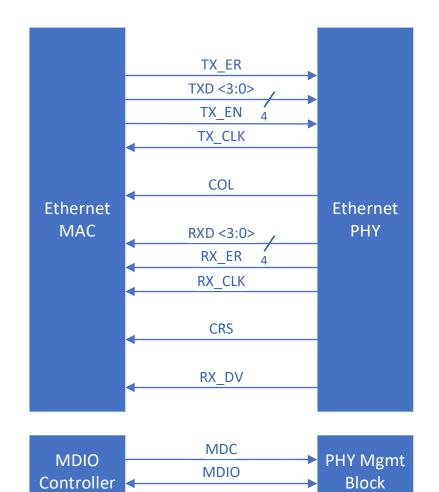
Building Consensus around Goals and Strategy

Jason Potterf
Affiliated with Cisco
Date TBD

NEA Presentation Agenda

- Brief History of Ethernet MII Solutions
- Motivating Factors in 802.3da and 802.3dg that Require a new MII
- Market Considerations
- Possible Path Forward Based on 802.3dg Straw Poll Results
- Discussion and Straw Polls

Feedback Requested

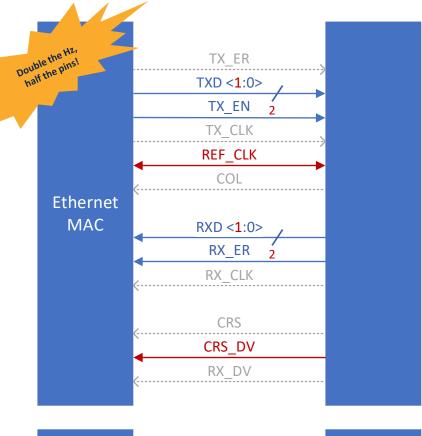

This is far too much detail. How much is enough?

Brief History of Ethernet MII Solutions

MII Evolution The Parallel Busses

IEEE 802.3 Clause 22. Reconciliation Sublayer (RS) and Media Independent Interface (MII)

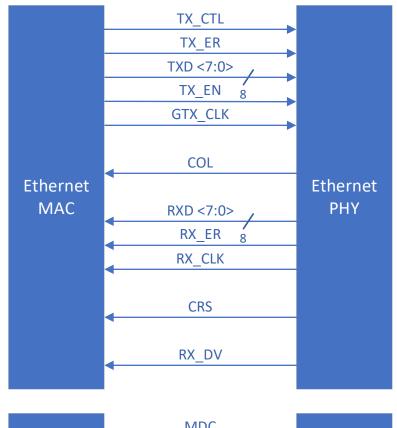
MII Score Card			
Max Data Rate	100 Mbit/s		
Signal Count	16 Data + 2 Mgmt		
Bus Max Clock Rate	25 MHz		
Clock Scheme	PHY Synchronous		
Command Space	4-bit		
Commands Assigned	Tx - 4/16, Rx – 5/16		
PLCA Support	Yes, Beacon and Commit		

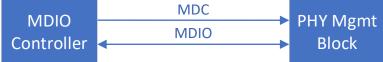


Industry Specification Reduced Media Independent Interface

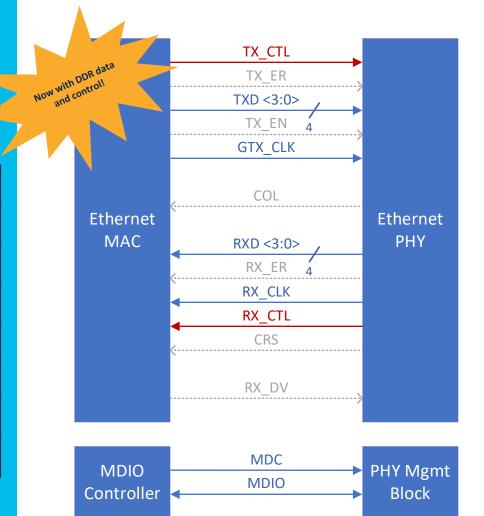
MII Score Card				
Max Data Rate	100 Mbit/s			
Signal Count	7 Data + 1 Clk + 2 Mgmt			
Bus Max Clock Rate	50 MHz			
Clock Scheme	System Synchronous			
Command Space	2-bit			
Commands Assigned	Tx - 2/4, Rx - 2/4 (Note 1)			
PLCA Support	No			

Note 1 – Some vendors have assigned values for EEE outside of the RMII spec.


Contribution to IEEE P802.3dg 100 Mb/s Long-Reach Single Pair Ethernet Task Force



IEEE 802.3 Clause 35. Reconciliation Sublayer (RS) and Gigabit Media Independent Interface (GMII)


MII Score Card			
Max Data Rate	1000 Mbit/s		
Signal Count	25 Data + 2 Mgmt		
Bus Max Clock Rate	125 MHz		
Clock Scheme	Source Synchronous		
Command Space	8-bit		
Commands Assigned	Tx - 4/256, Rx – 5/256		
PLCA Support	No		

Industry Specification Reduced Gigabit Media Independent Interface

MII Score Card			
Max Data Rate	1000 Mbit/s		
Signal Count	12 Data + 2 Mgmt		
Bus Max Clock Rate	125 MHz		
Clock Scheme	Source Synchronous DDR		
Command Space	8-bit		
Commands Assigned	Tx - 2/256, Rx – 4/256		
PLCA Support	No		

MII Evolution Parallel Bus Command Space

MII Commands

- Cause Transmission or Indicate
 Reception of something other than
 valid data bytes on the wire
- Uses TX_EN / TX_ER / RX_En / RX_ER to create address space
- Currently Defined in 802.3 Clause 22
 - Assert LPI
 - PLCA Beacon Request / Indication
 - PLCA Commit Request / Indication
 - False Carrier Indication

Table 22–1—Permissible encodings of TXD<3:0>, TX_EN, and TX_ER

TX_EN	TX_ER	TXD<3:0>	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Reserved
0	1	0001	Assert LPI
0	1	0010	PLCA BEACON request
0	1	0011	PLCA COMMIT request
0	1	0100 through 1111	Reserved
1	0	0000 through 1111	Normal data transmission
1	1	0000 through 1111	Transmit error propagation

Table 22–2—Permissible encoding of RXD<3:0>, RX_ER, and RX_DV

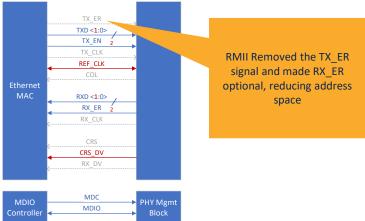
RX_DV	RX_ER	RXD<3:0>	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Normal inter-frame
0	1	0001	Assert LPI
0	1	0010	PLCA BEACON indication
0	1	0011	PLCA COMMIT indication
0	1	0100 through 1101	Reserved
0	1	1110	False Carrier indication
0	1	1111	Reserved
1	0	0000 through 1111	Normal data reception
1	1	0000 through 1111	Data reception with errors

GMII Commands

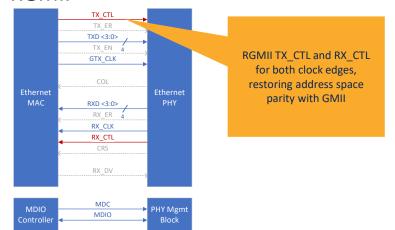
- GMII increases address space with wider bus
- Uses same control signals as MII, TX_EN / TX_ER / RX_En / RX_ER, to create address space
- Currently Defined in 802.3 Clause 22
 - Assert LPI
 - False Carrier indication
 - Carrier Extend/ Carrier Extend Error
- PLCA not defined here, but RGMII would benefit when operating at 10 Mb/s data rates

Table 35-1-Permissible encodings of TXD<7:0>, TX_EN, and TX_ER

TX_EN	TX_ER	TXD<7:0>	Description	PLS_DATA.request parameter			
0	0	00 through FF	Normal inter-frame	DATA_COMPLETE			
0	1	00	Reserved	_			
0	1	01	Assert LPI	_			
0	1	02 through 0E	Reserved	_			
0	1	0F	Carrier Extend	EXTEND (eight bits)			
0	1	10 through 1E	Reserved	_			
0	1	1F	Carrier Extend Error	EXTEND_ERROR (eight bits)			
0	1	20 through FF	Reserved	_			
1	0	00 through FF	Normal data transmission	ZERO, ONE (eight bits)			
1	1	00 through FF	Transmit error propagation	No applicable parameter			
NOTE-V	NOTE—Values in TXD<7:0> column are in hexadecimal.						

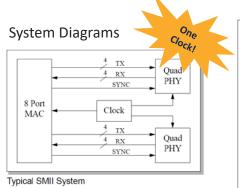

Table 35–2—Permissible encoding of RXD<7:0>, RX_ER, and RX_DV

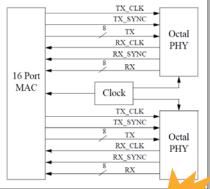
RX_ER	RXD<7:0>	Description	PLS_DATA.indication parameter
0	00 through FF	Normal inter-frame	No applicable parameter
1	00	Normal inter-frame	No applicable parameter
1	01	Assert LPI	No applicable parameter
1	02 through 0D	Reserved	_
1	0E	False Carrier indication	No applicable parameter
1	0F	Carrier Extend	EXTEND (eight bits)
1	10 through 1E	Reserved	_
1	1F	Carrier Extend Error	ZERO, ONE (eight bits)
1	20 through FF	Reserved	_
0	00 through FF	Normal data reception	ZERO, ONE (eight bits)
1	00 through FF	Data reception error	ZERO, ONE (eight bits)
	0 1 1 1 1 1 1 1	0 00 through FF 1 00 1 01 1 02 through 0D 1 0E 1 0F 1 10 through 1E 1 1F 1 20 through FF 0 00 through FF	0 00 through FF Normal inter-frame 1 00 Normal inter-frame 1 01 Assert LPI 1 02 through 0D Reserved 1 0E False Carrier indication 1 0F Carrier Extend 1 10 through 1E Reserved 1 1F Carrier Extend Error 1 20 through FF Reserved 0 00 through FF Normal data reception


RMII / RGMII Compromises

- RMII assumed the following
 - COL can be derived.
 - CRS and RX_DV can merge
 - TX_ER's purpose can be accomplished by intentional data corruption and will be obsoleted by switches
 - Two-bit data bus values during TX_EN / CRS_DV low can be use for control codes
- RGMII made similar assumptions about derived signals, but due to DDR clocking did not compromise on control codes

RMII

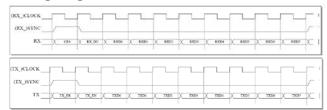

RGMII



MII Evolution The Serial Buses

Cisco Specification Serial-MII (aka SMII)

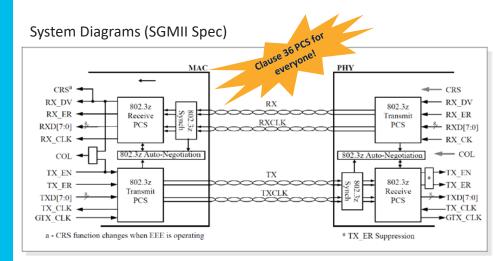
MII Score Card				
Max Data Rate	100 Mbit/s			
Signal Count	2/port + 2-5/PHY + 2 Mgmt			
Bus Max Clock Rate	125 MHz			
Clock Scheme	System or PHY Synchronous			
Command Space	8-bit bitfield			
Commands Assigned	Tx - 5/8, Rx – 7/8 bits			
PLCA Support	No			



Timing Diagrams

Many Clocks!

Command Bit Assignments


CRS	RX_DV	RXD0	RXD1	RXD2	RXD3	RXD4	RXD5	RXD6	RXD7
X	0	RX_ER from previ- ous frame	Speed 0 = 10MBit 1 = 100MBit	Duplex 0 = Half 1 = Full	Link 0 = Down 1 = Up	Jabber 0 = OK 1 = Error	Upper Nibble 0 = invalid 1 = valid	False Carrier Detected	1
x	1	One Data Byte (Two MII Data Nibbles)							

RXD7-0 Encoding

TX_ER	TX_EN	TXD0	TXD1	TXD2	TXD3	TXD4	TXD7-5
х	0	Use to force an error in a direct MAC to MAC con- nection	1 100MBit	1 Full Duplex	Link Up	0 No Jabber	1
x	1	One Data Byte (Two MII Data Nibbles)					

Cisco Specification Serial-GMII (aka SGMII)

MII Score Card			
Max Data Rate	1000 Mbit/s		
Signal Count	4/port + 2 Mgmt		
SerDes Max Rate	1.25 Gb/s		
Clock Scheme	SerDes or Source Sync		
Command Space	Large – Ordered Sets		
Commands Assigned	8 Non-Idle Sets Defined		
PLCA Support	No		

PCS Scheme (Clause 36)

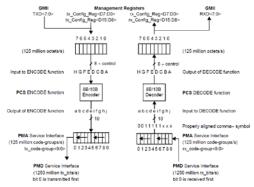
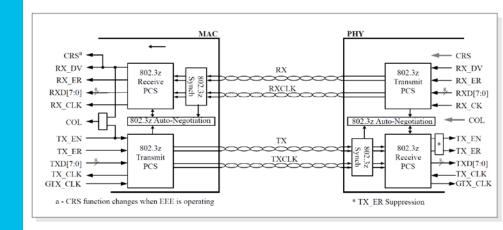


Figure 36-3-PCS reference diagram

Commands (Clause 36)

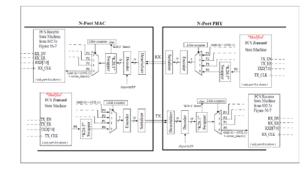

Table 36-3-Defined ordered sets

Code	Ordered Set	Number of Code-Groups	Encoding
C/	Configuration		Alternating /C1/ and /C2/
C1/	Configuration 1	4	/K28.5/D21.5/Config_Reg ^b
C2/	Configuration 2	4	/K28.5/D2.2/Config_Reg ^a
I/	IDLE		Correcting /I1/, Preserving /I2/
11/	IDLE 1	2	/K28.5/D5.6/
12/	IDLE 2	2	/K28.5/D16.2/
	Encapsulation		
R/	Carrier_Extend	1	/K23.7/
S/	Start_of_Packet	1	/K27.7/
T/	End_of_Packet	1	/K29.7/
V/	Error_Propagation	1	/K30.7/
/LI/	LPI		Correcting /LI1/, Preserving /LI2/
	LPI I	2	/K28.5/D6.5/
LII/			

^aTwo data code-groups representing the Config_Reg value.

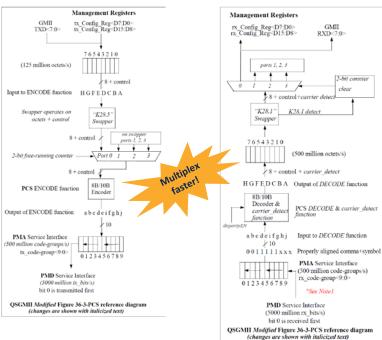
SGMII Choices

- Source Synchronous vs SerDes
 - Left to implementers, but all used SerDes
- SGMII assumed the following
 - CRS and COL can be derived
 - COL suffers added latency, though, which is problematic
 - Speeds < 1Gb/s achieved by "elongation" where bytes are duplicated 10x or 100x to allow constant SerDes data rates
- SGMII's use of the Clause 36 PCS gives us a large control code address space via 8b/10b code group ordered sets
 - EEE modified Clause 36 to enable LPI
 - PLCA did not define ordered sets in Clause 36 for COMMIT and BEACON as the PCS is only defined for 1 Gb/s data rates



MII Evolution The Multi-Port Serial Busses

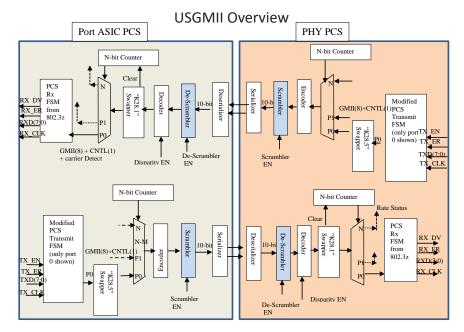
Cisco Specification Quad Serial GMII (aka QSGMII)


MII Score Card			
Max Data Rate	1000 Mbit/s, 4 Ports		
Signal Count	4/Quad Phy + 2 Mgmt		
SerDes Max Rate	5.0 Gb/s		
Clock Scheme	SerDes		
Command Space	Large – Ordered Sets		
Commands Assigned	K28.1 Reserved 8 Non-Idle Sets Defined		
PLCA Support	No		

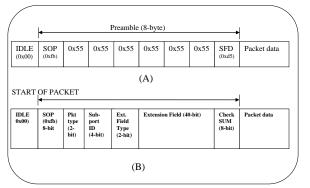
QSGMII Overview

QSGMII PCS TX Scheme

QSGMII PCS RX Scheme



We're tired of doing these! **Cisco Specification** Universal Serial GMII (aka USGMII)


One to Rule

Them All!

MII Score Card			
Max Data Rate	1000 Mbit/s, with 8, 4, and 1 Port Modes		
Signal Count	4/Octal PHY + 2 Mgmt		
SerDes Max Rate	10.0, 5.0, 1.25 Gb/s		
Clock Scheme	SerDes		
Command Space	Large – Ordered Sets Packet Control Header		
Commands Assigned	K28.1 Reserved 8 Non-Idle Sets Defined PCH Packet Types		
PLCA Support	No		

Packet Control Header

PCH Packet Types

00: Ethernet Packet with PCH

01: Ethernet packet, without

PCH (packet information) 10: Idle Packet - Contains

status data for a port - no packet data

11: Preemption Frame, aka Interspersing Express Traffic (IET) frame

In-Band PTP Timestamps via Extension Field 21

MII Evolution 10 Gig / mGig MII Interfaces

XGMII

- XGMII Defined in 802.3 Clause 46.
 Reconciliation Sublayer (RS) and 10
 Gigabit Media Independent Interface (XGMII)
 - High complexity 32-bit wide bus
 - Employs byte-wise lane striping
 - Per-lane control signals add pins
 - Lane management adds unnecessary complexity
 - Overkill for SPE applications

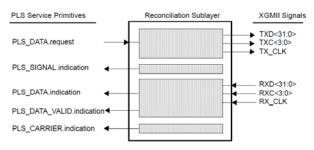


Figure 46-2—Reconciliation Sublayer (RS) inputs and outputs

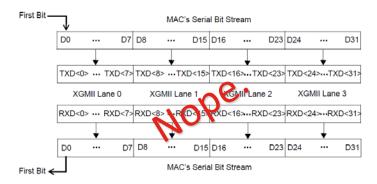
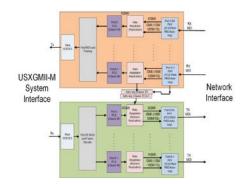


Figure 46–4—Relationship of data lanes to MAC serial bit stream

USXGMII Family

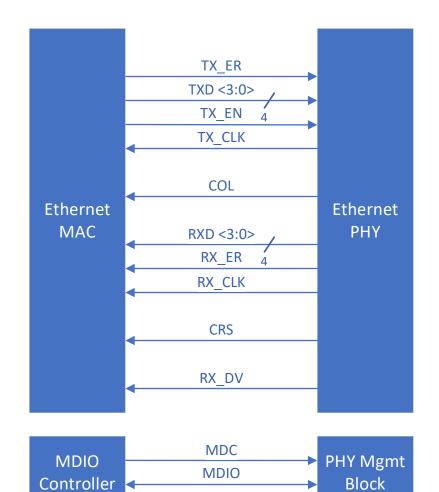
- Two Cisco Specs for mGig
 - Universal SXGMII Interface for a Single MultiGigabit Copper Network Port
 - Universal SXGMII PHY-MAC Interface for Multiple Network Ports
- All the features
 - 1-8 ports per SerDes pair
 - SerDes Speeds from 5Gb/s to 20 Gb/s
 - Packet Control Header
 - Clause 46 ordered sets
 - Clause 49 PCS
 - 64/66b encoding adds latency
- Complexity and latency not appropriate for SPE


USXGMII Modes

USXGMII Type	Num Prts	Network Port Types	Replications – Lowest to Highest data speed	PCS	SERDES Speed (Gbps)
10G-USXGMII	1	100M/1G/2.5G/5G/10G	100, 10, 4, 2, 1	Clause 49	10.3125
5G-USXGMII	1	100M/1G/2.5/5G	50, 5, 2, 1	Clause 49	5.15625

USXGMII Modes

MP-USXGMII Type	Num Prts	Network Port Types	Replications – Lowest to Highest data speed	PCS	SERDES Speed (Gbps)
10G-SXGMII	1	10M/100M/1G/2.5G/5G/10G	1000/100/10/4/2/1	Clause 49	10.3125
5G-SXGMII	1	10M/100M/1G/2.5/5G	500/50/5/2/1	Clause 49	5.15625
10G-DXGMII	2	10M100M/1G/2.5G/5G	500/50/5/2/1	Clause 49	10.3125
5G-DXGMII	2	10M/100M/1G/2.5G	250/25/2.5/1	Clause 49	5.156
20G-QXGMII	4	10M/100M/1G/2.5G/5G	500/50/5/2/1	Clause 49	20.625
20G-DXGMII	2	10M/100M/1G/2.5G/5G/10G	1000/100/10/4/2/1	Clause 49	20.625
2.5G-SXGMII	1	10M/100M/1G/2.5G	250/25/2.5/1	Clause 49	2.578125
10G-QXGMII	4	10M/100M/1G/2.5G	250/25/2.5/1	Clause 49	10.3125
20G-OXGMII	8	10M/100M/1G/2.5G	250/25/2.5/1	Clause 49	20.625


Feedback Requested

Is this the right amount of detail or is this too little?

Quick Review of Past MIIs

IEEE 802.3 Clause 22. Reconciliation Sublayer (RS) and Media Independent Interface (MII)

MII Score Card			
Max Data Rate	100 Mbit/s		
Signal Count	16 Data + 2 Mgmt		
Bus Max Clock Rate	25 MHz		
Clock Scheme	PHY Synchronous		
Command Space	4-bit		
Commands Assigned	Tx - 4/16, Rx – 5/16		
PLCA Support	Yes, Beacon and Commit		

MII Commands

- Cause Transmission or Indicate
 Reception of something other than
 valid data bytes on the wire
- Uses TX_EN / TX_ER / RX_En / RX_ER to create address space
- Currently Defined in 802.3 Clause 22
 - Assert LPI
 - PLCA Beacon Request / Indication
 - PLCA Commit Request / Indication
 - False Carrier Indication

Table 22–1—Permissible encodings of TXD<3:0>, TX_EN, and TX_ER

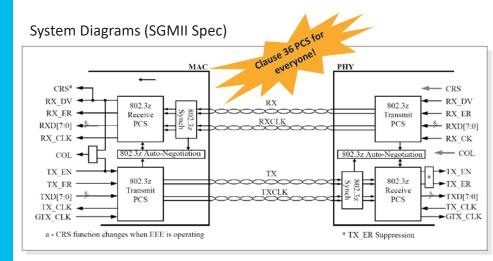

TX_EN	TX_ER	TXD<3:0>	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Reserved
0	1	0001	Assert LPI
0	1	0010	PLCA BEACON request
0	1	0011	PLCA COMMIT request
0	1	0100 through 1111	Reserved
1	0	0000 through 1111	Normal data transmission
1	1	0000 through 1111	Transmit error propagation

Table 22–2—Permissible encoding of RXD<3:0>, RX_ER, and RX_DV

RX_DV	RX_ER	RXD<3:0>	Indication
0	0	0000 through 1111	Normal inter-frame
0	1	0000	Normal inter-frame
0	1	0001	Assert LPI
0	1	0010	PLCA BEACON indication
0	1	0011	PLCA COMMIT indication
0	1	0100 through 1101	Reserved
0	1	1110	False Carrier indication
0	1	1111	Reserved
1	0	0000 through 1111	Normal data reception
1	1	0000 through 1111	Data reception with errors

Cisco Specification Serial-GMII (aka SGMII)

MII Score Card			
Max Data Rate	1000 Mbit/s		
Signal Count	4/port + 2 Mgmt		
SerDes Max Rate	1.25 Gb/s		
Clock Scheme	SerDes or Source Sync		
Command Space	Large – Ordered Sets		
Commands Assigned	8 Non-Idle Sets Defined		
PLCA Support	No		

PCS Scheme (Clause 36)

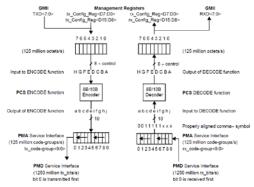
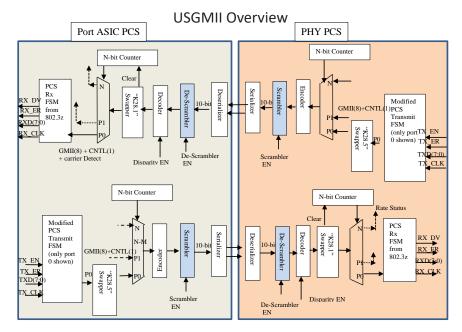


Figure 36-3-PCS reference diagram

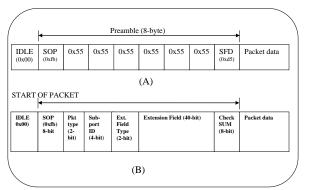
Commands (Clause 36)

Table 36-3-Defined ordered sets

Code	Ordered Set	Number of Code-Groups	Encoding
/C/	Configuration		Alternating /C1/ and /C2/
/C1/	Configuration 1	4	/K28.5/D21.5/Config_Reg ^h
/C2/	Configuration 2	4	/K28.5/D2.2/Config_Reg ^a
/I/	IDLE		Correcting /I1/, Preserving /I2/
/11/	IDLE 1	2	/K28.5/D5.6/
/12/	IDLE 2	2	/K28.5/D16.2/
	Encapsulation		
/R/	Carrier_Extend	1	/K23.7/
/\$/	Start_of_Packet	1	/K27.7/
/T/	End_of_Packet	1	/K29.7/
/V/	Error_Propagation	1	/K30.7/
/LI/	LPI		Correcting /L11/, Preserving /L12/
/L11/	LPI I	2	/K28.5/D6.5/


[&]quot;Two data code-groups representing the Config_Reg value.

We're tired of doing these! **Cisco Specification** Universal Serial GMII (aka USGMII)


One to Rule

Them All!

MII Score Card			
Max Data Rate	1000 Mbit/s, with 8, 4, and 1 Port Modes		
Signal Count	4/Octal PHY + 2 Mgmt		
SerDes Max Rate	10.0, 5.0, 1.25 Gb/s		
Clock Scheme	SerDes		
Command Space	Large – Ordered Sets Packet Control Header		
Commands Assigned	K28.1 Reserved 8 Non-Idle Sets Defined PCH Packet Types		
PLCA Support	No		

Packet Control Header

PCH Packet Types

00: Ethernet Packet with PCH

01: Ethernet packet, without PCH (packet information)

10: Idle Packet - Contains status data for a port - no

packet data 11: Preemption Frame, aka

Interspersing Express Traffic (IET) frame

In-Band PTP Timestamps via Extension Field 29

Motivating Factors in 802.3da and 802.3dg that Require a new MII

Feedback Requested

What else should we mention?

Motivation

- 802.3dg wants a new MII
 - Needs to provide a modern single-port solution for 100 mbit/s data rates
 - Also need to solve multi-port applications to enable switch density
 - Ordered sets already proposed on top of existing MII to address gaps
- 802.3da also wants a new MII
 - Most issues from 802.3dg apply to 802.3da as well
 - PLCA over MII presents challenges
- We need consensus on the right place to do this work

Market Considerations

Feedback Requested

Looking for contributions here

Market Stuff goes here

- Possible Topics
 - Implementation Complexity of High Pin Count Interfaces?
 - Challenges with existing four-pair/two-pair PHYs in existing applications?

Feedback Requested

 How much should go into this section? Should we keep it high level or get specific?

Possible Path Forward Based on 802.3dg Straw Poll Results

Implementation Rough Sketch

- Start with Cisco USGMII Specification
 - https://developer.cisco.com/site/usgmii-usxgmii/
- Use amended Clause 36 ordered sets with added PLCA support
- Update config register definitions
- Change rates to 1/10th USGMII data rates
 - Consider omitting scrambler
- Adopt SGMII-style source-synchronous clocking for lower complexity options:
 - Single-ended SDR data + 125 MHz Clock
 - Single-ended DDR data + 62.5 MHz Clock
 - Differential Data + Clock (at cost of 2x pins)
 - Differential Data + Clock Recovery (SerDes)

Issue 1 – PLCA RS

- In theory, the Reconciliation Sublayer (RS) controls the PHY's PLCA-related actions from the host side of the MII
- In practice, backwards compatibility with non-PLCA MCUs in the market has driven PLCA into the PHY
- The success of PLCA-aware PHYs diminishes the market demand for PLCA signaling across the MII
- Standardized registers to mange PLCA-aware PHYs could be of value as part of the 802.3 standard

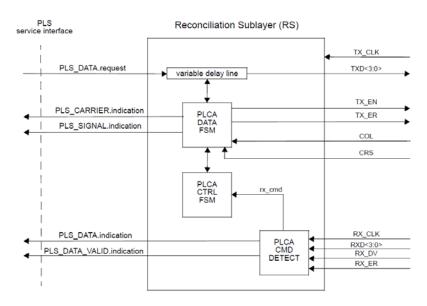
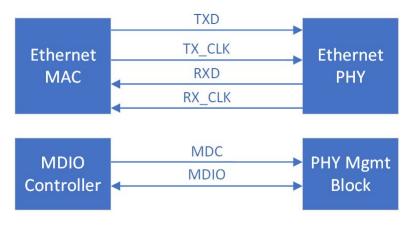
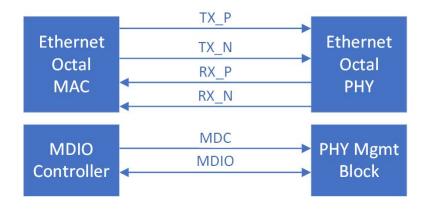



Figure 148-2—PLCA functions within the Reconciliation Sublayer (RS)

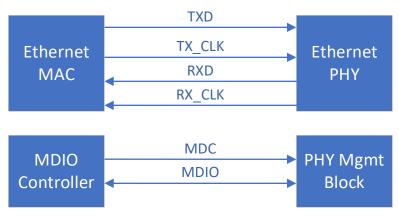
Issue 2 – Single Port Interfaces

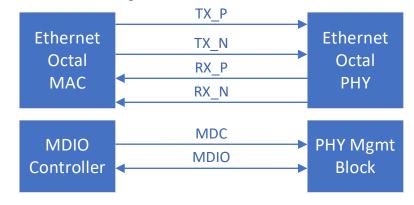
- Single Port Reduced Pin Interface
 - Competes with Open Alliance
 - SPI MAC/PHY Serial Interface
 - Three-Pin PMD Interface
 - More useful in 802.3dg than 802.3da due to ease of integration of a 10Base-T1S PHY in an MCU with external PMD
 - Could be useful for 4-pair 10/100 PHYs as well


Single-Port Configuration

Issue 3 – Multi-Port Interfaces

- Features to Consider
 - Slow SerDes / No SerDes
 - Variable Mux Ratio
 - 1-8 Ports / Interface
 - Embedded MDIO
 - Ordered Sets for Control
 - PLCA, LPI, Faults, Collisions, etc.
 - PTP Timestamping
 - Collision Notification
 - Preemption


Multi-Port Configuration


Issue 4 – One Solution or Two?

- Should we have a single logical solution that scales from single to multi-port?
- Should we allow multiple electrical interfaces to enable hardware optimization?
- See following slides for an example of a single logical solution...

Single-Port Configuration

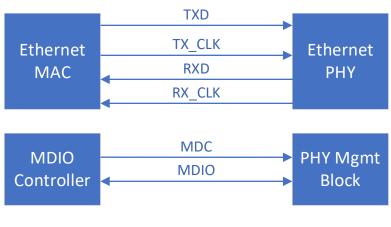
Multi-Port Configuration

Supported Configurations Proposal A

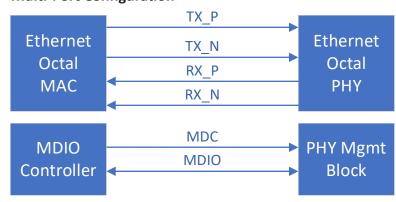
Number of Data ports	Data Speed per port	Number of Parts	Maximum MII Data Rate (Mbps)	Comment	
1-port	10M	1	12.5	One Port, 10 Mbit Only	
10M				10 Mbps Data Payload Before 8b/10b Overhead	
(USMII-Lite)					
1-port	10/100M	1	125	One Port	
10/100M				100 Mbps Data Payload Before 8b/10b Overhead	
(USMII)					
4-port	10/100M	4	500	Maximum of 4 ports	
10/100M				400 Mbps Data Payload Before 8b/10b Overhead	
(Q-USMII)					
8-port	10/100M	8	1000	Maximum of 8 ports	
10/100M				800 Mbps Data Payload Before 8b/10b Overhead	
(O-USMII)					

No In-Band Control Bandwidth Reservation

Supported Configurations Proposal B


Number of Data ports	Data Speed per port	Number of Parts	Maximum MII Data Rate (Mbps)	Comment
1-port	10M	1	15.625	One Port, 10 Mbit Only
10M				10 Mbps Data Payload Before 8b/10b Overhead
(USMII-Lite)				2.5 Mbps In-Band Control Bandwidth Reserved
1-port	10/100M	1	156.25	One Port
10/100M				100 Mbps Data Payload Before 8b/10b Overhead
(USMII)				25 Mbps In-Band Control Bandwidth Reserved
4-port	10/100M	4	625	Maximum of 4 ports
10/100M				400 Mbps Data Payload Before 8b/10b Overhead
(Q-USMII)				100 Mbps In-Band Control Bandwidth Reserved
8-port	10/100M	8	1250	Maximum of 8 ports
10/100M				800 Mbps Data Payload Before 8b/10b Overhead
(O-USMII)				200 Mbps In-Band Control Bandwidth Reserved

Includes In-Band Control Bandwidth Reservation


Proposal SPE-SMII and SPE-MP-SMII

MII Score Card					
Max Data Rate	100 Mbit/s, with 8 and 1 Port Modes				
Signal Count	4 per PHY + 2 Mgmt				
Clock Scheme	SP -125 MHz Source Sync Clock MP - 1.0 Gb/s SerDes				
Command Space	Amended Clause 36 Ordered Sets, Packet Control Header				
Features	PTP Timestamp via PCH Preemption via PCH EEE via Ordered Sets PLCA via Ordered Sets				

Single-Port Configuration

Multi-Port Configuration

Discussion and Straw Polls

The bridge to possible

Specific Feedback Sought

- Clause 36 PLCA Ordered Set fix should be done in IEEE 802.3, but should it be part of .3dg or a one-off quick effort?
- Should MII Spec be done as an industry spec to accelerate the existing SPE market?
- Do we want to bump the multi-port SerDes to 1.25 Gb/s to enable in-band MDIO?
- Same question, but for single-port, source-synchronous interface by faster clock and/or DDR data transfer methods to enable in-band MDIO?
- Is using a common Clause 36 PCS coding scheme for both single and multi-port interfaces beneficial?
- Are we deluding ourselves in thinking the RS will be in charge of PLCA?
 - If so, should we pivot to a model where PHY-based PLCA is explicitly supported?

Feature Requirement Straw Poll Summary

Features			
Control Bandwidth Reservation			
Embedded MDIO			
PTP Timestamping			
Frame Preemption (802.1Q IET)			
Energy Efficient Ethernet (LPI)			
Four-Pair 10/100 PHY Compatibility			
Half-Duplex Operation (COL)			
Half-Duplex Late Collision Frame Correlation			
PLCA Support			

Options: Mandatory Feature, Optional Feature, Omit Feature

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Control Bandwidth Reservation

Should we allocate reserved bandwidth for guaranteed delivery of control messages in the MII data stream?

Options:

Yes, Mandatory Feature 15
Yes, Optional Feature 2
No, Omit Feature 3
Abstain, No Opinion 13

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Embedded MDIO

Should we support embedding MDIO transactions in the MII data stream?

Options:

Yes, Mandatory Feature 16 Yes, Optional Feature 5 No, Omit Feature 3 Abstain, No Opinion 10

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

PTP Timestamping

Should we support communicating PTP timestamps in the MII data stream?

Options:

Yes, Mandatory Feature 14
Yes, Optional Feature 9
No, Omit Feature 1
Abstain, No Opinion 10

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Frame Preemption (802.1Q IET)

Should we support communicating information necessary to manage frame preemption in the MII data stream?

Options:

Yes, Mandatory Feature 9

Yes, Optional Feature 4

No, Omit Feature 1

Abstain, No Opinion 18

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Energy Efficient Ethernet (LPI)

Should we support communicating control data necessary to enable EEE in the MII data stream?

Options:

Yes, Mandatory Feature 15
Yes, Optional Feature 8
No, Omit Feature 0
Abstain, No Opinion 8

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Two-Pair 10/100 PHY Compatibility

Should we support communicating management information necessary to support legacy 10/100 four-pair PHYs in the MII data stream?

Options:

Yes, Mandatory Feature 15

Yes, Optional Feature 2

No, Omit Feature 2

Abstain, No Opinion 15

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Half-Duplex Operation (COL)

Should we support communicating status messages necessary to manage collisions in the MII data stream?

Options:

Yes, Mandatory Feature 15 Yes, Optional Feature 4 No, Omit Feature 2 Abstain, No Opinion 11

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

Half-Duplex Late Collision Frame Correlation

Should we support correlating collisions with frames to improve systems with high latency MII schemes?

Options:

Yes, Mandatory Feature 4
Yes, Optional Feature 4
No, Omit Feature 4
Abstain, No Opinion 24

Features

Control Bandwidth Reservation

Embedded MDIO

PTP Timestamping

Frame Preemption (802.1Q IET)

Energy Efficient Ethernet (LPI)

Four-Pair 10/100 PHY Compatibility

Half-Duplex Operation (COL)

Half-Duplex Late Collision Frame Correlation

PLCA Support

PLCA Support

Should we support PLCA control in the MII data stream?

Options:

Yes, Mandatory Feature 13

Yes, Optional Feature 1

No, Omit Feature 1

Abstain, No Opinion 17

Feature Requirement Straw Poll Results Summary

Features	Mandatory	Optional	Omit	Abstain
Control Bandwidth Reservation	15	2	3	13
Embedded MDIO	16	5	3	10
PTP Timestamping	14	9	1	10
Frame Preemption (802.1Q IET)	9	4	1	18
Energy Efficient Ethernet (LPI)	15	8	0	8
Four-Pair 10/100 PHY Compatibility	15	2	2	15
Half-Duplex Operation (COL)	15	4	2	11
Half-Duplex Late Collision Frame Correlation	4	4	4	24
PLCA Support	13	1	1	17

Options: Mandatory Feature, Optional Feature, Omit Feature

Path Forward Decisions with Straw Poll Results

- What's the right construct?
 - New MII (e.g. USGMII)
 - Extender Sublayer (e.g. XAUI)
- Where should this be done?
 - IEEE 802.3 New Project 8
 - IEEE 802.3dg 6
 - Industry Specification 4
 - Nowhere 1
 - Abstain 8
- I would support defining at least the aspects of an MII relevant to 100mbit full duplex in 802.3dg.
 - Support 18
 - Oppose 2
 - Abstain 11
- Can IEEE complete this in a timely manner so as to compete with other industry standards?