

Error Handling for 100BASE-T1L

Jacobo Riesco Brian Murray Philip Curran

Introduction

- ► At the July meeting the 802.3dg group approved a motion to adopt a constant latency MII to 8N/8N+1 encoding/decoding for 100BASE-T1L
 - See <u>Lo_3dq_01a_0724</u>
- ► At the September meeting a PCS for 100BASE-T1L was presented that included a simpler scheme for the constant latency MII to 8N/8N+1 encoding
 - See <u>Riesco_3dg_01a_09172024</u>
- With both of these proposals there is a limitation with respect to error handling compared to previous PHY technologies for speeds ≤ 1 Gbit/s and compared to multi-G PHY technologies

Error Handling in Other PHY Technologies

- Previous PHY technologies for speeds ≤ 1 Gbit/s that do not use 8N/(8N+1) encoding use packet delimiters
 - Delimiters are added/removed by the PHY PCS so that
 - Errors anywhere within a packet are decoded as MII/GMII data reception with errors (RX_DV = 1, RX_ER = 1)
 - Errors during IPGs are decoded as MII/GMII false carrier indications (RX_DV = 0, RX_ER =1, RXD = 0xE)
- ► Multi-G PHY technologies also use packet delimiters
 - Packet delimiters are defined in the permissible TX/RX encodings of the corresponding Media Independent Interfaces (and mapped in the PCS encoder/decoder)
 - Data valid status is generated at the Multi-G Reconciliation Sublayer (RS DATA_VALID_STATUS) based on those delimiters (see for example 46.1.7.5 for XGMII)
 - Enables the Multi-G Reconciliation Sublayers (RS) to differentiate if errors were received within a packet or not

Receiver Errors Handling

- ► The 8N/(8N+1) encoding/decoding adopted proposal does not use explicit start or end packet delimiters
- ► At the transmitter side, a packet may contain 8N/(8N+1) encoded data and error control octets
 - Normal data transmission (TX_EN = 1, TX_ER = 0) is encoded as data
 - Transmit error propagation (TX_EN = 1, TX_ER = 1) is encoded as error control
- ▶ At the receiver, any errors will be decoded as error control octets
 - Since there are no packet delimiters, and a packet may start with an error, it is not possible in general to differentiate if errors occurred within a packet or not
 - RX_ER and RX_DV must both be asserted when an error is decoded within a packet
 - But if the error occurred during the IPG, that may result in a received packet with errors
 - The MAC frameCheckError/alignmentError counters will be incremented incorrectly

Proposed Error Handling in 100BASE-T1L

- ▶ It is desirable to differentiate if errors occurred within a packet or not
 - Prevents data reception with error being signalled on the MII for errors received outside a packet
 - The consequences might be minor for fully standard compliant MACs, but could cause unforeseen problems with existing MAC devices, referred to as MACs from now on
 - Most MACs supporting Clause 22 RS and MII are proven for older technologies like 100BASE-TX
 - 100BASE-T1L will have to interoperate with those MACs
- ► It is proposed to add start and end packet delimiter control codes to the 8N/(8N+1) encoding
 - Note that existing Cs/CD control codes already act as packet delimiters when a packet starts/ends on odd encoder cycles
- ► This is consistent with the use of start and end packet delimiters in almost all previous technologies; 100BASE-X, 1000BASE-X, 1000BASE-T, 100BASE-T1, 10BASE-T1L, 10BASE-T1S and all the Multi-G technologies
 - This is necessary to work robustly with the huge range of MACs in the field

Questions?