Proposal for PMA training frame, scrambler, and 4B6B coding

Tingting Zhang Huawei Technologies

Introduction

- Most of the PMA training based on 4B6B PAM2 have achieved consensus.
- Simulation results (Tingting 3dg 01 29 10 2024, Murray 3dg 04a 11132024, Tingting 3dg 15 01 2025) have confirmed that 4B6B coding using NND 6-tuples and the random bit Sg_n is well-behaved without significant concern over data correlation.
- This presentation gives a proposal of the training frame, the scrambler, and line coding used during PMA training for 100BASE-T1L.

PMA Training Frame

- The PMA training frame follows a similar approach as in Clauses 97. During PMA training, the training frame with indicators is used to establish the PHY frame and block boundaries.
- Each training frame is composed of 16 partial PHY frames. Each partial PHY frame has 128 bits, aligned with the PHY frame without FEC.
- All the bits in each training frame are zero except:
 - The 2nd bit (in red) in every four partial PHY frames is set to 1 to align the PHY frames and facilitate scrambler synchronization.
 - > The 12-octet InfoField (in black shadow) in the 16th partial PHY frame.

PFC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
	4					Γ	rair	ning	frar	ne (PFC	=15)				•]	Frair	ning	frar	ne (I	PFC	2=31)			►
Training frame																																
PHY frame without FEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
without I LC																																
PHY frame with FEC			0]	1			2	2			3	3			2	1			4	5			(5			7	7	

PMA Training Scrambling

- The training frame with embedded InfoField is XORed with the scrambler bits $Sy_n[3:0]$ (also used in data mode) in nibble width. The 1st bit of each partial PHY frame is scrambled with $Sy_n[0]$ (i.e. $Scr_n[0]$).
 - > Definition of the scrambler bits $Sy_n[3:0]$ refers to <u>Murray_3dg_02_09172024</u>.
 - > Setting the 1st bit of the first 15 partial PHY frames to zero, makes $Scr_n[0]$ available on the 1st bit of each nibble except the InfoField, facilitating scrambler synchronization.
- The scrambled nibble $ST_n[3:0]$ during training can be expressed as:

4B6B PAM2 Coding

- The scrambled nibble $ST_n[3:0]$ is mapped to PAM2 6-tuple with bounded running disparity during PMA training.
- Each of the 16 4-bit values is associated with one of the nonnegative disparity (NND) 6-tuples, shown in the right table.
 - Each NND 6-tuple has a unique complementary code group (not in the table), generated by negating each element of the NND 6-tuple. Both 6-tuples correspond to the same 4-bit value.
- The running disparity (RD) at the transmitter is controlled as follows:
 - If both RD and the disparity of the 6-tuple associated with the 4bit value are positive, then the 6-tuple is negated before transmission.
 - > If RD is zero or the disparity of the 6-tuple corresponding to the 4-bit value is zero, then the random bit Sg_n determines whether to negate the 6-tuple before transmission.
 - > RD is recomputed after transmission of each 6-tuple.
- The mathematical expression for the running disparity control process can refer to <u>Curran 3dg 01 01202025</u>.

4 bits input		NND	PAM	2 6-tı	6-tuples					
0000	-1	1	-1	1	-1	1				
0001	-1	-1	1	1	-1	1				
0010	-1	1	1	1	1	1				
0011	1	-1	1	-1	1	1				
0100	-1	1	-1	1	1	-1				
0101	1	1	1	-1	1	-1				
0110	-1	1	1	-1	-1	1				
0111	-1	1	-1	-1	1	1				
1000	1	1	1	1	-1	-1				
1001	-1	-1	-1	1	1	1				
1010	-1	-1	1	-1	1	1				
1011	-1	-1	1	1	1	-1				
1100	1	1	-1	1	1	-1				
1101	-1	1	1	-1	1	-1				
1110	-1	1	1	1	-1	-1				
1111	1	1	-1	-1	1	1				

Conclusion

- The proposed PMA Training frame is similar to Clauses 97, 149, and 165 with small modifications:
 - > Composed of 16 partial PHY frames with 128 bits per partial frame
 - The 2nd bit in every four partial PHY frames are set to 1, to establish PHY frame alignment and facilitate scrambler synchronization.
 - > InfoField in the 16th partial PHY frame of each training frame
- The training frame is XORed with the scrambler bits $Sy_n[3:0]$ in a nibble width.
 - > $Sy_n[3:0]$ is also used in data mode and is defined in Murray 3dg 02 09172024.
- Every 4 scrambled bits are encoded to a PAM2 6-tuple with bounded disparity during training.

Q & A