Proposal for 100BASE-T1L PMA Training

Tingting Zhang Huawei Technologies

Introduction

• This is a proposal for the training frame, the scrambler, and line coding used for 100BASE-T1L PMA training.

PMA Training Frame

- The PMA training frame follows a similar approach as in Clauses 97. During PMA training, the training frame with indicators is used to establish the PHY frame and block boundaries.
- Each training frame is composed of 16 partial PHY frames. Each partial PHY frame has 128 bits, aligned with the PHY frame without FEC.
- All the bits in each training frame are zero except:
 - The 2nd bit (in red) in every four partial PHY frames is set to 1 to align the PHY frames and facilitate scrambler synchronization.
 - > The 12-octet InfoField (in black shadow) in the 16th partial PHY frame.

PFC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
			Tra	aini	ng	fran	ne (PFO	C=1	5)					-				Tra	ini	ng	fran	ne (PFC	C=3	1)						
Training frame																																
PHY frame without FEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
with FEC		()]	l			2	2				3			4	4			4	5			(5			7	7	

PHY Control InfoField

- A 12-octet InfoField is used during PMA training to exchange PHY Control information between link partners.
 - > Same approach as in Clauses 97, 149, and 165
- CRC16 is the same as Clauses 97, 149 and 165.
- 1-octet Message field (octet 7):
 - > Master: same as in Clauses 97, 149 and 165.
 - Slave: The timing_lock_OK<4> bit is replaced by a reserved bit (set to 0), since the Slave starts transmission after timing lock and the PCS synchronization.

	octet 1	octet 2	octet 3	octets	4/5/6	octet 7	00	ctets 8/9/	10	octets 11/12	2
	0xBB	0xA7	0x00	PFC	224	Message	MSG24	MSG24	MSG24	CRC16	
	Field										
9MA_9 7:6>	state I S>	loc_rcvr_st <5>	tatus	us en_slave_tx reserved <4> <3:0>				PMA_sta <7:6>	te loo	 c	reserved < 4 :0>
00	00 0			0	0000			00		0	00000
00)	0		1	0000	_		00		1	00000
00)	1		1	0000			01		1	00000
01 1				1							

PHY Control InfoField (Cont.)

- 3-octet PHY capability bits (octets 8/9/10) sent during TRAINING (PMA_state=00) are described in <u>Riesco 3dg 02 10292024</u> with RS-FEC and sequence order set support capability bit included.
- 3-octet DataSwPFC24 (octets 8/9/10) bits, indicating the partial PHY frame count when the transmitter switches from PAM2 to PAM3, are used during COUNTDOWN (PMA_state=01).
 - > DataSwPFC24 shall be set to an integer multiple of 16.

PHY capability bits (PMA_state = 00)

Octet 8	Octet 9			Octet 1	0				
76543210	76543210	7	6	5	4	3	2	1	0
Rese	erved	SEQen	EEECn	trl[1:0]	RSen	R	ese	rve	d

- SEQen advertises support for sequence ordered sets
- EEECntrl[1:0] advertises the EEE abilities
- RSen advertises support for RS-FEC

Riesco_3dg_02_10292024

PMA Training Scrambling

- The training frame with embedded InfoField is XORed with the scrambler bits $Sy_n[3:0]$ (also used in data mode) in nibble width. The 1st bit of each partial PHY frame is scrambled with $Sy_n[0]$ (i.e. $Scr_n[0]$).
 - > Setting the 1st bit of the first 15 partial PHY frames to zero, makes $Scr_n[0]$ available on the 1st bit of each nibble except the InfoField, facilitating scrambler synchronization.
- The scrambled nibble $ST_n[3:0]$ during training is expressed as:

PAM2 Training Sequence Generation

- The scrambled nibble $ST_n[3:0]$ is mapped to PAM2 6-tuple with bounded running disparity during PMA training.
- Each of the 16 4-bit values corresponds to one code group with non-negative disparity (NND), shown in the right table.
- The running disparity (RD) control rule at the transmitter is described in <u>Tingting 3dg 01a 11132024</u>:
 - If both RD and the disparity of the code group associated with the 4-bit value are positive, then each element of the code group is negated before transmission.
 - > If either RD or the disparity of the code group associated with the 4-bit value is zero, then the random bit Sg_n determines whether to negate the code group before transmission.
 - > RD is recomputed after transmission of each code group.

4 bits input	NND Code groups									
0000	-1	1	-1	1	-1	1				
0001	-1	-1	1	1	-1	1				
0010	-1	1	1	1	1	1				
0011	1	-1	1	-1	1	1				
0100	-1	1	-1	1	1	-1				
0101	1	1	1	-1	1	-1				
0110	-1	1	1	-1	-1	1				
0111	-1	1	-1	-1	1	1				
1000	1	1	1	1	-1	-1				
1001	-1	-1	-1	1	1	1				
1010	-1	-1	1	-1	1	1				
1011	-1	-1	1	1	1	-1				
1100	1	1	-1	1	1	-1				
1101	-1	1	1	-1	1	-1				
1110	-1	1	1	1	-1	-1				
1111	1	1	-1	-1	1	1				

Conclusion

- Propose to use the PAM2 training sequence with a similar PMA Training frame as in Clauses 97, 149, and 165, for 100BASE-T1L.
- Apply the following small modifications to the training frame:
 - > Composed of 16 partial PHY frames with 128 bits per partial frame
 - The 2nd bit in every four partial PHY frames is set to 1, to establish PHY frame alignment and facilitate scrambler synchronization.
 - > InfoField located in the 16th partial PHY frame:
 - timing_lock_OK not used in the Salve Message field
 - modified PHY capability bits in <u>Riesco 3dg 02 10292024</u>
 - DataSwPFC24 is an integer multiple of 16.
- The training frame is scrambled with the scrambler bits $Sy_n[3:0]$ in a nibble width. The 1st bit of each partial PHY frame is scrambled with $Sy_n[0]$.
- The scrambled bit stream is mapped to PAM2 training sequence with bounded RD, using the proposed 4B6B encoding method.

Q & A