
Philip Curran
Brian Murray

Proposal for PCS Transmit Using 8b6T line code

100 Mb/s Long-Reach Single Pair Ethernet Task Force

IEEE 802.3dg

Analog Devices, Inc.

►The PCS transmit function generates code-groups of the following
form

{An, Bn, Cn, Dn, En, Fn}

Each code-group is a 6-tuple of ternary symbols
►The index, n, may be viewed as the value of a code-group counter or

byte counter
►For each n, the PCS transmit function consume 2 samples of each MII

transmit signal. We identify these using indices 2n and 2n+1 like this
TXD2n

TXD2n+1

►We will implement PCS data transmission enabling as in Figure 146-4
 We will use the names tx_enable and tx_error rather than tx_enable_mii and tx_error_mii

Interaction with MII

Analog Devices, Inc. 210 May 2024

►Per clause 22.2.1.6, the MAC may request that the PHY corrupt a frame
 This is done by asserting TX_ER while TX_EN is high

► In clause 146 this situation is handled in the PCS transmit state diagram of
Figure 146-5
 A different end-of-stream delimiter identifies a frame that is to be corrupted

 This approach was necessitated due to a shortage of special code-groups

►Previous clauses, such as clause 40, have used special symbols to propagate
errors that are flagged by the MAC
 We will use this approach

►The variable xmt_error will request the transmission of a special code-group
xmt_error = (tx_enable2n & tx_error2n) | (tx_enable2n+1 & tx_error2n+1)

 An error that is flagged by the MAC for one nibble is expanded to a byte which is consistent
with the intended use of TX_ER as described in clause 22.2.1.6

Errors Flagged by the MAC

Analog Devices, Inc. 310 May 2024

►The side-stream scramblers for the LEADER and FOLLOWER will use
the same generator polynomials as specified in clause 40.3.1.3.1

௅
ଵଷ ଷଷ

ி
ଶ଴ ଷଷ

►A realization of each of these scramblers using a linear feedback shift
register (LFSR) is shown in Figure 40-6

►Bits ௡ and ௡ are generated from the bits of the scrambler LFSR as in
clause 40.3.1.3.2

௡ ௡ ௡

௡ ௡ ௡

Scrambler and Generation of Bits and

Analog Devices, Inc. 410 May 2024

►The 4 bits ௡ are generated from the bit ௡ using the
following generating polynomial

ଷ ଼

►The equations for bits ௡ are as follows

௡ ௡

௡ ௡ ௡ ௡

௡
ଶ

௡ ௡ ௡

௡
ଷ

௡ ௡ ௡ ௡ ௡

►This is as was specified in clause 40.3.1.3.2

Generation of Bits

Analog Devices, Inc. 510 May 2024

►The 4 bits ௡ are generated from the bit ௡ using the same
generating polynomial, , as was used to generate bits ௡

►The equations for bits ௡ are as follows

௡ ௡ ௡ ௡

௡ ௡ ௡ ௡ ௡ ௡

௡
ଶ

௡ ௡ ௡ ௡ ௡

௡
ଷ

௡ ௡ ௡ ௡ ௡

௡ ௡ ௡ ௡

►Again, this is as was specified in clause 40.3.1.3.2

Generation of Bits

Analog Devices, Inc. 610 May 2024

►The 2 bits ௡ are generated from the bit ௡ using the same
generating polynomial, , as was used to generate bits ௡

►The equations for bits ௡ are as follows

௡ ௡ ௡ ௡

௡ ௡ ௡ ௡ ௡ ௡

►This is as was specified in clause 40.3.1.3.2 except that we only
generate 2 bits

Generation of Bits

Analog Devices, Inc. 710 May 2024

►We use similar equations to those of clause 146.3.3.4.3

𝑆𝑑௡[3] = ൞

𝑇𝑋𝐷ଶ௡[3]^𝑆𝑦௡[3], if (tx_enableଶ୬ = TRUE)

1^𝑆𝑦௡[3], else if (loc_rcvr_status = OK)

𝑆𝑦௡[3], else

𝑆𝑑௡[2] = ൞

𝑇𝑋𝐷ଶ௡[2]^𝑆𝑦௡[2], if (tx_enableଶ୬ = TRUE)

1^𝑆𝑦௡[2], else if (loc_lpi = TRUE)

𝑆𝑦௡[2], else

𝑆𝑑௡[1] = ቊ
𝑇𝑋𝐷ଶ௡ 1 ^𝑆𝑦௡ 1 , if tx_enableଶ୬ = TRUE

𝑆𝑦௡ 1 , else

𝑆𝑑௡[0] = ቊ
𝑇𝑋𝐷ଶ௡ 0 ^𝑆𝑦௡ 0 , if tx_enableଶ୬ = TRUE

𝑆𝑦௡ 0 , else

►Note that we do not reverse bits ௡ and ௡ during IDLE as was done
in clause 146
 The rationale for this will be explained shortly

Generation of Bits

Analog Devices, Inc. 810 May 2024

►We use the following equation for these bits

𝑆𝑑௡[7: 4] = ቊ
𝑇𝑋𝐷ଶ௡ାଵ 3: 0 ^𝑆𝑥௡ 3: 0 , if tx_enableଶ୬ାଵ = TRUE

𝑆𝑥௡ 3: 0 , else

Generation of Bits

Analog Devices, Inc. 910 May 2024

►The PHY generates a continuous stream of code-groups
 Each code-group is a 6-tuple of ternary symbols

►Code-groups align with byte boundaries in the PHY
 This is due to the use of an 8b6T line code

►MII is a nibble–oriented interface
 There is no guarantee that byte boundaries in the PHY match those in the MAC
 TX_EN may rise or fall on odd nibble boundaries from a PHY perspective

►Could delay TX_EN transitions to align with PHY byte boundaries
 There is no guarantee that byte alignment between the MAC and the PHY is consistent from

one system reset to the next
 This could create latency variability
 We will maintain the byte alignment from the MAC and pass it through the physical layer
 This requires different stream delimiters for changes in TX_EN on odd nibble boundaries

Stream Delimiters

Analog Devices, Inc. 1010 May 2024

►The variables tx_mode, tx_enable and xmt_error determine the code-
group category which will be one of the following

Code-group Categories

Analog Devices, Inc. 1110 May 2024

Criterion for Selecting this CategoryCode-group
Category

tx_mode is SEND_ZSEND_Z

tx_enable switches from FALSE to TRUE on a byte boundarySSD

tx_enable switches from FALSE to TRUE on an odd nibble boundarySSD_ODD

tx_enable switches from TRUE to FALSE on a byte boundaryESD

tx_enable switches from TRUE to FALSE on an odd nibble boundaryESD_ODD

An error condition is to be propagated to the link partnerXMT_ERR

Frame data is to be sentDATA

None of the other code-group categories have been selectedIDLE

►The code-group category determines which table will be used to select the
non-negative disparity (NND) code-group for transmission
 If the code-group category is SEND_Z, then the code-group is {0, 0, 0, 0, 0, 0}
 Otherwise, the code-group is determined either by the bit 𝑆𝑔௡[1] or by the bits 𝑆𝑑௡[7: 0] ,

depending on the code-group category
 NND code-groups are denoted {TAn, TBn, TCn, TDn, TEn, TFn}

►The NND code-groups are passed to the running disparity (RD) control
function
 This function may negate a code-group with positive disparity to bound RD
 Negation of a code-group means negating each of the ternary symbols in the 6-tuple
 We call the resulting code-group a balanced code-group
 Balanced code-groups are denoted {An, Bn, Cn, Dn, En, Fn}

►Balanced code-groups are transmitted one ternary symbol at a time
 The leftmost symbol in the code-group is transmitted first

Outline of Transmission Process

Analog Devices, Inc. 1210 May 2024

► Sending a code-group from the SSD_ODD code-group category informs the receiver that it
should assert RX_DV on an odd nibble boundary

Code-group Category Selection

Analog Devices, Inc. 1310 May 2024

CommentCode-group
Category

xmt_errortx_enable

nn-12n+12n2n-12n-22n-3

SEND_ZxxxxxxxSEND_Z

IDLExx00000not SEND_Z

Ignore any error until next byteSSDxx11000

Ignore any error until next byteSSD_ODDxx10000

Delayed error from start of frameXMT_ERRx111110

Delayed error from start of frameXMT_ERRx111100

DATA0011100

XMT_ERR1011100

DATA0011110

XMT_ERR1011110

► If the falling edge of tx_enable occurs on an odd nibble boundary, the final data
nibble is padded out to a byte
 Per the equations for 𝑆𝑑௡[7: 4], the nibble that is added is determined by 𝑆𝑥௡ 3: 0

 The code-group that follows is selected from the ESD_ODD code-group category. This informs the
receiver that it should discard the last nibble of the previous byte and deassert RX_DV on an odd nibble
boundary.

Code-group Category Selection

Analog Devices, Inc. 1410 May 2024

CommentCode-group
Category

xmt_errortx_enabletx_mode

nn-12n+12n2n-12n-22n-3

DATA0x11111not
SEND_Z XMT_ERR1x11111

Last nibble of frame paddedDATA0x01111

Error in last nibble of frameXMT_ERR1x01111

ESDxx00111

ESD_ODDxx00011

IDLExx00001

►We use bit ௡ to choose between 2 code-groups to avoid
unnecessary correlation artefacts in the stream
 Each of these 2 code-groups is the element-wise negative of the other

 The code-groups in the SSD_ODD category are the same as those in the SSD category but
with ௡ inverted

Start-of-Stream Code-groups

Analog Devices, Inc. 1510 May 2024

TAn, TBn, TCn, TDn, TEn, TFn𝑆𝑔௡[1]Code-group
Category

+1, +1, -1, -1, +1, -10SSD

-1, -1, +1, +1, -1, +11

-1, -1, +1, +1, -1, +10SSD_ODD

+1, +1, -1, -1, +1, -11

►We use bit ௡ to choose between 2 code-groups to avoid
unnecessary correlation artefacts in the stream
 Each of these 2 code-groups is the element-wise negative of the other

 The code-groups in the ESD_ODD category are the same as those in the ESD category but
with ௡ inverted

End-of-Stream Code-groups

Analog Devices, Inc. 1610 May 2024

TAn, TBn, TCn, TDn, TEn, TFn𝑆𝑔௡[1]Code-group
Category

+1, -1, -1, +1, +1, -10ESD

-1, +1, +1, -1, -1, +11

-1, +1, +1, -1, -1, +10ESD_ODD

+1, -1, -1, +1, +1, -11

►We use bit ௡ to choose between 2 code-groups to avoid
unnecessary correlation artefacts in the stream
 Each of these 2 code-groups is the element-wise negative of the other

Transmit Error Code-groups

Analog Devices, Inc. 1710 May 2024

TAn, TBn, TCn, TDn, TEn, TFn𝑆𝑔௡[1]Code-group
Category

-1, -1, +1, +1, +1, -10XMT_ERR

+1, +1, -1, -1, -1, +11

►When the selected code-group category is DATA we use bits ௡
to choose the code-group
 As there are too many code-groups to list them all here, the following file is provided

data_code_groups_05132024.txt

This file has 256 lines. Each line has 7 columns. The first column is the ௡ value in
binary form. The remaining 6 columns provide the ternary values for the code-group. The
following table lists the first 4 code-groups from this file.

DATA Code-groups

Analog Devices, Inc. 1810 May 2024

TAn, TBn, TCn, TDn, TEn, TFn𝑆𝑑௡[7: 0]Code-group
Category

-1, +1, -1, +1, +1, -100000000DATA

-1, +1, +1, -1, +1, -100000001

+1, -1, -1, +1, -1, +100000010

+1, -1, +1, -1, -1 , +100000011

►In clause 146 there is no reliable way to distinguish IDLE from DATA
 Bits ௡ and ௡ are swapped during IDLE. However, a data pattern can readily

reproduce this effect. The result is that there is no way to detect IDLE signaling while
receiving a frame.

 If the COMMA code-groups that mark the end of a frame are missed, the PCS receive state
machine of Figure 146-9 becomes stuck in the DATA and DATA DECODE states. The
situation may persist until the start of the next frame and both frames are lost.

 By contrast, the sign reversal scheme of clause 40.3.1.3.6 ensures that IDLE signaling can
be detected while receiving a frame.

►We propose to use certain spare code-groups to identify IDLE
 We replace 16 of the code-groups that are used for DATA signaling with special code-

groups that are used only during IDLE

 Detecting any of these special code-groups while receiving a frame will be treated as a
premature end condition

IDLE Signaling

Analog Devices, Inc. 1910 May 2024

►When the selected code-group category is IDLE we use bits ௡
to choose the code-group
 For ௡ values in the binary range 00000000 to 11101111 the IDLE code-groups are

the same as the data code-groups. However, for ௡ values in the binary range
11110000 to 11111111 the special IDLE code-groups listed in the following file are used

idle_code_groups_05132024.txt

This file has 16 lines and is organized in the same way as was used for the DATA code-
groups. The following table lists the first 4 code-groups from this file.

IDLE Code-groups

Analog Devices, Inc. 2010 May 2024

TAn, TBn, TCn, TDn, TEn, TFn𝑆𝑑௡[7: 0]Code-group
Category

-1, +1, +1, +1, +1, +111110000IDLE

+1, -1, +1, +1, +1, +111110001

+1, +1, -1, +1, +1, +111110010

+1, +1, +1, -1, +1, +111110011

►It is proposed not to support RD checking in the receiver
 A disturbance such as an EFT event would be likely to cause an error in such an RD check

 The RD checking process would take time to resynchronize after such an error

 This would result in error propagation

►We do not see a benefit in including RD checking in the receiver
 Such checking is not required to detect frame errors

 The benefit of RD control is on the transmit side

►As we will not support RD checking in the receiver, there is no need to
reset RD at the start and the end of each frame as was done in clause
146

Running Disparity Checking

Analog Devices, Inc. 2110 May 2024

►The RD control function maintains a running disparity value, n. This value
is initialized to 0 at n=0

►A sign value n
is generated using the following equations

DS୬ = (TAn +TBn +TCn+ TDn+ TEn+TFn)

SXn = ቐ
−1, if DSn > 0 & RDn > 0 | RDn = 0 & 𝑆𝑔௡ 0 = 1

+1, else

►The balanced code-group is generated by applying the computed sign to the
NND code-group

{An, Bn, Cn, Dn, En, Fn} = SXn {TAn, TBn, TCn, TDn, TEn, TFn}

Here  denotes element-wise multiplication by a scalar.
►The running disparity value is updated as shown below

RD୬ାଵ= RD୬ + (An +Bn +Cn+ Dn+ En+Fn)

Running Disparity Control

Analog Devices, Inc. 2210 May 2024

