Budgeting for receiver noise in Channel Operating Margin (COM)

Adam Healey Broadcom Inc. IEEE P802.3dj Task Force May 2024 (r2)

Philosophy

- IEEE 802.3 standards avoid the definition of implementations and instead define externally observable behaviors
- Such behaviors are constrained in a way to foster interoperability between different implementations
- It is often the case that a reference model needs to be defined in order to describe the observable behaviors
- Reference models may have aspects that resemble implementations
- However, it is a non-goal for the reference model to be a detailed model of any specific implementation

Role of a reference receiver

- A reference receiver is a model that describes the externally observable behaviors of a receiver
- It is used to describe the ability of a receiver to equalize an input signal
- It allows for impairments that limit the performance of practical receiver implementations
- It does not need to include a detailed model for each impairment
- However, it should provide an impairment budget that is large enough to accommodate a realistic level of impairments
- A reference receiver should set a lower bound on receiver performance that enables interoperability with compliant transmitters and channels

The reference receiver "trap"

- It is easy to interpret features of the reference receiver to be requirements on implementations
- It is only the externally observable behavior that matters regardless of how an implementation achieves that behavior
- The more the reference receiver resembles a detailed receiver model, the easier it becomes to fall into this "trap"
- A reference receiver should not include details beyond what is necessary to achieve the goals of the standard

Reference receiver noise budget

- The calculation of Channel Operating Margin (COM) includes two terms that can be used to allocate a budget for receiver noise (impairments)
- Input-referred noise spectral density η_0 has a channel-dependent impact on COM
- The η_0 term is often assumed to correspond to sources of noise external to the receiver (but it can include internal noise sources)
- Minimum COM provides a channel-independent allocation for additional noise (impairments)

[1] Symbol-by-symbol detector (SBSD) with decision feedback equalizer (DFE) or maximum likelihood sequence detector (MLSD)

Augmenting the receiver noise budget

- It has been suggested that an additional noise term η_1 is needed for the receiver noise budget
- It is intended to represent analog-to-digital converter (ADC) quantization noise
- It could also be used to model additional sources of noise internal to the receiver
- The distinguishing characteristic is that it is only "enhanced" by the FFE (where η_0 is also "enhanced" by the CTE)

Simplified model for quantization noise

Distribution of signal and noise amplitude at the sampler output

 $v_{lsb} = v_{p2p} 2^{-\text{ENOB}}$ ADC quantization step

$$\sigma_{qn}^2 = \frac{v_{lsb}^2}{12}$$
 Quantization noise variance (uniform distribution

 $S_{qn}(\theta) = \frac{\eta_1}{2} = \frac{\sigma_{qn}^2}{f_h}$ $\theta = [-\pi, \pi)$ Power spectral density at sampler output $(f_b \text{ is the signaling rate, } \pi \text{ is } f_b/2)$

 P_x is the probability that the signal exceeds v_{p2p} . It is set to $3\text{DER}_0/4$ (which is the probability of an initial PAM-4 symbol error corresponding to DER_0) for now. This choice is a subject for discussion.

• This is a starting point for an η_1 model that can be used for analysis

Impact of quantization noise

56

52

48

44

- Refer to <u>Appendix A</u> for details on test cases and COM configuration
- COM reduction due to quantization noise is a function of ENOB and CTE capability
- Consumes the majority of the traditional 3 dB fixed noise allocation
- Various combinations of ENOB and CTE yield similar worst-case performance

Test case	СТЕ	ENOB
0 (baseline)	Scaled CR/KR with $g_{\rm DC} = 0$	Infinite
1	Scaled CR/KR	5.5
2	Scaled C2M	5.5
3	Scaled C2M	6

24

28

32

Die-to-die IL at 53.1 GHz, dB

36

12

16

20

Composition of noise at the FFE output

- Noise at the FFE output due to η_1 increases with channel loss
- Low-loss asymptote related to choice of ENOB value

Is an additional noise term needed?

Test case	СТЕ	ղ ₀ , V²/GHz	ENOB
1	Scaled CR/KR	6e-9	5.5
3	Scaled C2M	6e-9	6
4	Scaled CR/KR with $g_{\rm DC} = 0$	10e-9	Infinite

- Signature of quantization noise at FFE output suggests two components to its impact
- Channel-dependent or loss-dependent impact
- Channel-independent impact
- Components can be mapped into the original noise budget parameters
- Example comparing results with increased η_0 to results including η_1 is shown
- ΔCOM < 0 suggests that a portion of the fixed (channel-independent) budget is being used

Impact on the prediction of MLSD performance

Test case	CTE	ղ ₀ , V²/GHz	ENOB
1	Scaled CR/KR	6e-9	5.5
3	Scaled C2M	6e-9	6
4	Scaled CR/KR with $g_{\rm DC} = 0$	10e-9	Infinite

- Results updated using equation set U1.c from shakiba_3dj_01b_2401
- · Similar trends observed
- Suggests original noise budget methodology could be applied here as well

One way to account for quantization noise

- COM includes two parameters that can be used to allocate a noise budget for compliant receiver implementations
- It has been shown that ADC quantization noise can consume an outsized portion of the budget for channels approaching the 40 dB loss limit
- As a result, the values for these noise budget parameters must be chosen carefully
- An increase in the value of η_0 is warranted to mimic the dependence of the quantization noise penalty on channel loss
- There is also a penalty "floor" that needs to be considered in the minimum COM limit
- High-frequency equalization can be removed from the CTE (and done by the FFE) reducing COM calculation complexity and time

Another way to account for quantization noise

- It has been suggested that a new parameter be added to the noise budget to account for the impact of quantization noise
- This would create a specific "signature" for the penalty due to quantization noise based on the values chosen for CTE parameters, ENOB, etc.
- Implementations may not exhibit this specific signature
- The result could still be used as a lower bound on performance
- The additional noise source will require a search loop to optimize the CTE high-frequency equalization adding to the COM calculation time
- Parameters of the CTE high-frequency equalization capability will need to be discussed and agreed upon

The bottom line...

- Impact of quantization noise should be addressed in the COM calculation
- Either approach to this problem could be used
- COM can represent a specific signature for the quantization noise penalty at the expense of computation complexity and time
- Keep in mind that the goal for COM should be to provide a lower bound on performance that is applicable to multiple implementations
- It is necessary to decide which approach to take in order achieve closure on the COM calculation and COM parameter values

Appendix A

COM test cases and configuration

Test case definition (133 x 3 = 399 test cases)

KR channel source files	Number of cases
shanbhag_3dj_02_2305	4
weaver_3dj_02_2305	36
weaver_3dj_elec_01_230622	4
mellitz_3dj_02_elec_230504	27
<u>mellitz_3dj_03_elec_230504</u>	25
<u>akinwale_3dj_01_2310</u>	7
Total	103

CR channel source files	Number of cases
shanbhag_3dj_01_2305	6
<u>kocsis_3dj_02_2305</u>	5
lim_3dj_03_230629	1
lim_3dj_04_230629	1
<u>lim_3dj_07_2309</u>	1
akinwale_3dj_02_2311	4
weaver_3dj_02_2311	12
Total	30

Parameter	Model A1	Model A2	Model B	Units	Information
package_tl_gamma0_a1_a2	[5e-4, 8.9e-4, 2e-4]		[5e-4, 6.5e-4, 3e-4]	var.	
package_tl_tau	6.141e-3		6.141e-3	ns/mm	
package_Z_c	[87.5, 87.5;	92.5, 92.5]	[92, 92; 70, 70; 80, 80 ; 100, 100]	Ohm	[TX, RX]
z_p (TX)	[13; 1.8]	[34; 1.8]	[46; 1; 1; 0.05]	mm	
z_p (NEXT)	[13; 1.8]	[34; 1.8]	[46; 1; 1; 0.05]	mm	
z_p (FEXT)	[13; 1.8]	[34; 1.8]	[46; 1; 1; 0.05]	mm	
z_p (RX)	[11; 1.8]	[32; 1.8]	[44; 1; 1; 0.05]	mm	
C_p	[40e-6, 40e-6]		nF	[TX, RX]	

COM configuration used for testing (not a proposal)

Parameter	Setting	Units	Information
L	4		
f_b	106.25	GBd	
М	32		
A_v	0.413	V	
A_fe	0.413	V	
A_ne	0.45	V	
T_r	0.004	ns	
R_0	50	Ohm	
R_d	[50, 50]	Ohm	[TX, RX]
C_d	[40e-6, 90e-6, 110e-6; 40e-6, 90e-6, 110e-6]	nF	[TX; RX]
L_s	[0.13, 0.15, 0.14; 0.13, 0.15, 0.14]	nH	[TX; RX]
C_b	[30e-6, 30e-6]	nF	[TX, RX]
SNR_TX	33	dB	
A_DD	0.02	UI	
sigma_RJ	0.01	UI	
eta_0	6e-9	V^2/GHz	
DER_0	2e-4		

- COM <u>4.50beta3</u> augmented to include...
- Quantization noise model
- Corrected implementation of equation U1.c from <u>shakiba_3dj_01b_2401</u>

COM configuration used for testing, continued

Parame	ter	:	Setting	Info	ormation	Parameter	Setting	Information
c(0)	c(0)		1			TS_SRCH_MODE	full-sweep	
c(-1)			0			ts_anchor	1	
c(-2)			0	FOR N	/01.	sample_adjustment	[-32, 16]	
c(-3)			0	JEFE		ffe_pre_tap_len	5	
c(-4)			0 NO			ffe_post_tap_len	10	
c(1)			0			ffe_pre_tap1_max	1	
c(0)	c(0)		1			ffe_post_tap1_max	1	
· ·		ffe_tapn_max	1					
Parameter	Scaled (CR/KR	Scaled C2M	Units	Information	N_g	1	Number of floating tap groups
f_r		0.	58	*f_b		N_f	4	Taps per group
g_DC	[-20:	1:0]	[-11:1:0]	dB	[min:step:max]	N_max	60	Maximum floating tap index
f_z	42.	5	25.16	GHz		N_tail_start	11	Earliest floating tap position
f_p1	42.	5	40	GHz		N_b	1	
f_p2	106.	25	56	GHz		b_max(1)	0.85	
g_DC_HP	[-6:1	:0]	[-3:0.5:0]	dB	[min:step:max]	b_min(1)	0	
f_HP_PZ	1.328	125	2.65625	GHz		MLSE	0 or 3	No MLSE or Equation U1.c

Appendix B

Additional simulation results

Compare η_0 = 12e–9 V²/GHz to models including η_1

Test case	СТЕ	ղ ₀ , V²/GHz	ENOB
1	Scaled CR/KR	6e-9	5.5
3	Scaled C2M	6e-9	6
4a	Scaled CR/KR with $g_{\rm DC} = 0$	12e-9	Infinite

Compare $\eta_0 = 14e-9 V^2/GHz$ to models including η_1

Test case	СТЕ	ղ ₀ , V²/GHz	ENOB
1	Scaled CR/KR	6e-9	5.5
3	Scaled C2M	6e-9	6
4b	Scaled CR/KR with $g_{\rm DC} = 0$	14e-9	Infinite