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Philosophy

• IEEE 802.3 standards avoid the definition of implementations and instead 
define externally observable behaviors

• Such behaviors are constrained in a way to foster interoperability between 
different implementations

• It is often the case that a reference model needs to be defined in order to 
describe the observable behaviors

• Reference models may have aspects that resemble implementations

• However, it is a non-goal for the reference model to be a detailed model of 
any specific implementation
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Role of a reference receiver

• A reference receiver is a model that describes the externally observable 
behaviors of a receiver

• It is used to describe the ability of a receiver to equalize an input signal

• It allows for impairments that limit the performance of practical receiver 
implementations

• It does not need to include a detailed model for each impairment

• However, it should provide an impairment budget that is large enough to 
accommodate a realistic level of impairments 

• A reference receiver should set a lower bound on receiver performance 
that enables interoperability with compliant transmitters and channels

IEEE P802.3dj Task Force, May 2024 (r2) 3



The reference receiver “trap”

• It is easy to interpret features of the reference receiver to be requirements 
on implementations

• It is only the externally observable behavior that matters regardless of how 
an implementation achieves that behavior

• The more the reference receiver resembles a detailed receiver model, the 
easier it becomes to fall into this “trap”

• A reference receiver should not include details beyond what is necessary 
to achieve the goals of the standard
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Reference receiver noise budget

• The calculation of Channel Operating Margin (COM) includes two terms 
that can be used to allocate a budget for receiver noise (impairments)

• Input-referred noise spectral density 𝜂0 has a channel-dependent impact 
on COM

• The 𝜂0 term is often assumed to correspond to sources of noise external 
to the receiver (but it can include internal noise sources)

• Minimum COM provides a channel-independent allocation for additional  
noise (impairments)
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[1] Symbol-by-symbol detector (SBSD) with decision feedback equalizer (DFE) or maximum likelihood sequence detector (MLSD)
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Augmenting the receiver noise budget

• It has been suggested that an additional noise term 𝜂1 is needed for the 
receiver noise budget

• It is intended to represent analog-to-digital converter (ADC) quantization 
noise

• It could also be used to model additional sources of noise internal to the 
receiver

• The distinguishing characteristic is that it is only “enhanced” by the FFE 
(where 𝜂0 is also “enhanced” by the CTE)
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Simplified model for quantization noise

• This is a starting point for an 𝜂1 model that can be used for analysis
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amplitude at the sampler output
𝑣𝑙𝑠𝑏 = 𝑣𝑝2𝑝2
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Quantization noise variance (uniform distribution)

𝑆𝑞𝑛 𝜃 =
𝜂1
2
=
𝜎𝑞𝑛
2

𝑓𝑏
𝜃 = ሾ−𝜋, ሻ𝜋

Power spectral density at sampler output

(𝑓𝑏 is the signaling rate, 𝜋 is Τ𝑓𝑏 2)

𝑃𝑥 is the probability that the signal exceeds 𝑣𝑝2𝑝. It is set to Τ3DER0 4 (which

is the probability of an initial PAM-4 symbol error corresponding to DER0) for

now. This choice is a subject for discussion.

Τ𝑃𝑥 2Τ𝑃𝑥 2
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Impact of quantization noise
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• Refer to Appendix A for details on test cases 
and COM configuration

• COM reduction due to quantization noise is a 
function of ENOB and CTE capability

• Consumes the majority of the traditional 3 dB 
fixed noise allocation

• Various combinations of ENOB and CTE yield 
similar worst-case performance

Test case CTE ENOB

0 (baseline) Scaled CR/KR with gDC = 0 Infinite

1 Scaled CR/KR 5.5

2 Scaled C2M 5.5

3 Scaled C2M 6

COM(1)−COM(0)

COM(2)−COM(0)

COM(3)−COM(0)Margin to 3 dB COM limit
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Composition of noise at the FFE output

• Noise at the FFE output due to 𝜂1 increases with channel loss

• Low-loss asymptote related to choice of ENOB value
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Noise due to h1

Noise due to h0

Test case 1 Test case 2 Test case 3 
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Is an additional noise term needed?

• Signature of quantization noise at FFE output 
suggests two components to its impact

• Channel-dependent or loss-dependent impact

• Channel-independent impact

• Components can be mapped into the original 
noise budget parameters

• Example comparing results with increased 𝜂0
to results including 𝜂1 is shown

• ΔCOM < 0 suggests that a portion of the fixed 
(channel-independent) budget is being used
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Test case CTE h0, V
2/GHz ENOB

1 Scaled CR/KR 6e−9 5.5

3 Scaled C2M 6e−9 6

4 Scaled CR/KR with gDC = 0 10e−9 Infinite

COM(1)−COM(4)

COM(3)−COM(4)

Margin to 3 dB COM limit
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Impact on the prediction of MLSD performance

• Results updated using equation set U1.c from 
shakiba_3dj_01b_2401

• Similar trends observed

• Suggests original noise budget methodology 
could be applied here as well
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COM(1)−COM(4)

COM(3)−COM(4)

Test case CTE h0, V
2/GHz ENOB

1 Scaled CR/KR 6e−9 5.5

3 Scaled C2M 6e−9 6

4 Scaled CR/KR with gDC = 0 10e−9 Infinite

Margin to 3 dB COM limit
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One way to account for quantization noise

• COM includes two parameters that can be used to allocate a noise budget 
for compliant receiver implementations

• It has been shown that ADC quantization noise can consume an outsized 
portion of the budget for channels approaching the 40 dB loss limit

• As a result, the values for these noise budget parameters must be chosen 
carefully

• An increase in the value of 𝜂0 is warranted to mimic the dependence of the 
quantization noise penalty on channel loss

• There is also a penalty “floor” that needs to be considered in the minimum 
COM limit

• High-frequency equalization can be removed from the CTE (and done by 
the FFE) reducing COM calculation complexity and time
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Another way to account for quantization noise

• It has been suggested that a new parameter be added to the noise budget 
to account for the impact of quantization noise

• This would create a specific “signature” for the penalty due to quantization 
noise based on the values chosen for CTE parameters, ENOB, etc.

• Implementations may not exhibit this specific signature

• The result could still be used as a lower bound on performance

• The additional noise source will require a search loop to optimize the CTE 
high-frequency equalization adding to the COM calculation time

• Parameters of the CTE high-frequency equalization capability will need to 
be discussed and agreed upon
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The bottom line...

• Impact of quantization noise should be addressed in the COM calculation

• Either approach to this problem could be used

• COM can represent a specific signature for the quantization noise penalty 
at the expense of computation complexity and time

• Keep in mind that the goal for COM should be to provide a lower bound on 
performance that is applicable to multiple implementations

• It is necessary to decide which approach to take in order achieve closure 
on the COM calculation and COM parameter values
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Appendix A
COM test cases and configuration
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Test case definition (133 x 3 = 399 test cases)
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Parameter Model A1 Model A2 Model B Units Information

package_tl_gamma0_a1_a2 [5e−4, 8.9e−4, 2e−4] [5e−4, 6.5e−4, 3e−4] var.

package_tl_tau 6.141e−3 6.141e−3 ns/mm

package_Z_c [87.5, 87.5; 92.5, 92.5] [92, 92; 70, 70; 80, 80 ; 100, 100] Ohm [TX, RX]

z_p (TX) [13; 1.8] [34; 1.8] [46; 1; 1; 0.05] mm

z_p (NEXT) [13; 1.8] [34; 1.8] [46; 1; 1; 0.05] mm

z_p (FEXT) [13; 1.8] [34; 1.8] [46; 1; 1; 0.05] mm

z_p (RX) [11; 1.8] [32; 1.8] [44; 1; 1; 0.05] mm

C_p [40e−6, 40e−6] nF [TX, RX]

KR channel source files Number of cases

shanbhag_3dj_02_2305 4

weaver_3dj_02_2305 36

weaver_3dj_elec_01_230622 4

mellitz_3dj_02_elec_230504 27

mellitz_3dj_03_elec_230504 25

akinwale_3dj_01_2310 7

Total 103

CR channel source files Number of cases

shanbhag_3dj_01_2305 6

kocsis_3dj_02_2305 5

lim_3dj_03_230629 1

lim_3dj_04_230629 1

lim_3dj_07_2309 1

akinwale_3dj_02_2311 4

weaver_3dj_02_2311 12

Total 30
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https://www.ieee802.org/3/dj/public/tools/CR/lim_3dj_07_2309.zip
https://www.ieee802.org/3/dj/public/tools/CR/akinwale_3dj_02_2311.zip
https://www.ieee802.org/3/dj/public/tools/CR/weaver_3dj_02_2311.zip


COM configuration used for testing (not a proposal)

• COM 4.50beta3 augmented to include...

• Quantization noise model

• Corrected implementation of equation 
U1.c from  shakiba_3dj_01b_2401
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Parameter Setting Units Information

L 4

f_b 106.25 GBd

M 32

A_v 0.413 V

A_fe 0.413 V

A_ne 0.45 V

T_r 0.004 ns

R_0 50 Ohm

R_d [50, 50] Ohm [TX, RX]

C_d [40e−6, 90e−6, 110e−6; 40e−6, 90e−6, 110e−6] nF [TX; RX]

L_s [0.13, 0.15, 0.14; 0.13, 0.15, 0.14] nH [TX; RX]

C_b [30e−6, 30e−6] nF [TX, RX]

SNR_TX 33 dB

A_DD 0.02 UI

sigma_RJ 0.01 UI

eta_0 6e−9 V^2/GHz

DER_0 2e−4
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COM configuration used for testing, continued
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Parameter Scaled CR/KR Scaled C2M Units Information

f_r 0.58 *f_b

g_DC [−20:1:0] [−11:1:0] dB [min:step:max]

f_z 42.5 25.16 GHz

f_p1 42.5 40 GHz

f_p2 106.25 56 GHz

g_DC_HP [−6:1:0] [−3:0.5:0] dB [min:step:max]

f_HP_PZ 1.328125 2.65625 GHz

Parameter Setting Information

TS_SRCH_MODE full-sweep

ts_anchor 1

sample_adjustment [-32, 16]

ffe_pre_tap_len 5

ffe_post_tap_len 10

ffe_pre_tap1_max 1

ffe_post_tap1_max 1

ffe_tapn_max 1

N_g 1 Number of floating tap groups

N_f 4 Taps per group

N_max 60 Maximum floating tap index

N_tail_start 11 Earliest floating tap position

N_b 1

b_max(1) 0.85

b_min(1) 0

MLSE 0 or 3 No MLSE or Equation U1.c

Parameter Setting Information

c(0) 1

c(−1) 0

c(−2) 0

c(−3) 0

c(−4) 0

c(1) 0

c(0) 1
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Appendix B
Additional simulation results
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Compare h0 = 12e−9 V2/GHz to models including h1
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COM(1)−COM(4a)

COM(3)−COM(4a)

Margin to 3 dB COM limit

Test case CTE h0, V
2/GHz ENOB

1 Scaled CR/KR 6e−9 5.5

3 Scaled C2M 6e−9 6

4a Scaled CR/KR with gDC = 0 12e−9 Infinite

COM(1)−COM(4a)

COM(3)−COM(4a)

Margin to 3 dB COM limit

No MLSD With MLSD
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Compare h0 = 14e−9 V2/GHz to models including h1
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COM(1)−COM(4b)

COM(3)−COM(4b)

Margin to 3 dB COM limit

Test case CTE h0, V
2/GHz ENOB

1 Scaled CR/KR 6e−9 5.5

3 Scaled C2M 6e−9 6

4b Scaled CR/KR with gDC = 0 14e−9 Infinite

COM(1)−COM(4b)

COM(3)−COM(4b)

Margin to 3 dB COM limit

No MLSD With MLSD

21


