MLSE \triangle COM Equation U1.c Rewritten in 802.3 Standard DER Definition

Masashi Shimanouchi⁽¹⁾ Hossein Shakiba⁽²⁾ Hsinho Wu⁽¹⁾ Mike Peng Li⁽¹⁾ ⁽¹⁾ Intel, ⁽²⁾ Huawei Technologies Canada

May 2024

Introduction

 In the January 2024 Interim meeting, equation U1.c was adopted by 802.3dj to calculate the delta COM due to MLSE effect in the COM reference receiver:

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise}^{-1} \left(1 - \frac{2}{3} DER_{MLSE} \right) \right) - IP$$

$$DER_{MLSE} \approx 2 \sum_{j=1}^{\infty} \left(\frac{3}{4} \right)^j \left(1 - CDF_{noise, jEE} \left(A_s \frac{\left(\text{trace}(\rho_{noise, jEE}) \right)^{\frac{3}{2}}}{\sqrt{\Sigma_{vertical} \Sigma_{horizental}(\rho_{noise, jEE})}} \right) \right)$$
Equation U1.c

• In the equation above, DER_{MLSE} meant the probability of the initial symbol error event caused by MLSE

Suggestion (1/2)

- However, the term "DER" is a reserved term in the 802.3 standard, which is specified in clause 93A.1.7
 - Incorrect DER_0 formula is found in the current published specification, and it must be corrected to $1-P(y_0)=DER_0$

$$P(y) = \int_{-\infty}^{y} p(y) dy$$
(93A-37)

The noise amplitude, A_{ni} , is the magnitude of the value of y_0 that satisfies the relationship $P(y_0) = DER_0$ where DER_0 is the target detector error ratio. The detector error ratio is the probability that the detector fails to identify the signal level that was transmitted.

Suggestion (2/2)

 The ∆COM equation U1.c is to be rewritten as follows with the "DER" definition being consistent with the 802.3 standard description in clause 93A.1.7

$$\Delta COM \approx 20 \log_{10} \left(\frac{1}{A_s} CDF_{noise}^{-1} (1 - DER_{MLSE}) \right) - IP$$

$$DER_{MLSE} \approx \sum_{j=1}^{\infty} \left(\frac{3}{4} \right)^{j-1} \left(1 - CDF_{noise,jEE} \left(A_s \frac{\left(trace(\rho_{noise,jEE}) \right)^{\frac{3}{2}}}{\sqrt{\sum_{vertical} \sum_{horizontal}(\rho_{noise,jEE})}} \right) \right) = Rewritten Equation U1.c.$$

• Note that the ΔCOM results do not change by the rewritten equation

Thank You!

