

Choosing an Optimum Reference Receiver for 200Gbps/Lane KR and CR

Tobey P.-R. Li, Mau-Lin Wu

MediaTek

IEEE P802.3dj Task Force

May 2024

Outline

- Investigation Highlights
- **Update to CR and KR Link Simulation based on COM 4.5beta3**
- **D** Reference Receiver Parameters Study
- Proposed Changes to Table 178–13 and Table 179-16

Investigation Highlights

- A wide range of reference receiver parameters were used for CR & KR analysis
 - Contributions used reference receiver framework of RxFFE + 1-tap DFE and MMSE methodology

	СОМ	fr	eta_0	b_max (1)	d_w	N_fix	N_g	N_f	MLSE	Note
lim_3dj_02_2403	4.3	0.5	5e-9	0.85	6	67	0	-	1	
healey_3dj_01_2401	4.2beta	0.58	6e-9	0.85	5	10	[0, 1]	4	0	 No guarantee 40 dB loss budget Short PKG effect haven't been studied
lit_3dj_01a_2403	4.4beta	0.58	6e-9	0.75	5	10	1	4	0	• No guarantee 40 dB loss budget

- This presentation will investigate the effect on reference receiver parameters
 - Number of Rx FFE fixed-position taps: [16:4:24 30 40:20:120]
 - Requirement of Rx FFE floating taps: [2:2:10] groups* 4 taps per group
 - Requirement of MLSE

Channel Test Cases

• Channel source: Tools & Channels

CR/KR Channel Source	Test Cases
shanbhag_3dj_01_2305	6
kocsis_3dj_02_2305	5
lim_3dj_03_230629	1
lim_3dj_04_230629	1
lim_3dj_07_2309	1
akinwale_3dj_02_2311	4
weaver_3dj_02_2311	12
mellitz_3dj_02_elec_230504	27
weaver_3dj_02_2305	36
shanbhag_3dj_02_2305	4
weaver_3dj_elec_01_230622	4
akinwale_3dj_01_2310	7
Total	108

• Package model follows 802.3dj D1.0 Table 179–15

Parameter	Symbol	Value	Units	
Device model Single-ended device capacitance for stage 1 Single-ended device capacitance for stage 2 Single-ended device capacitance for stage 3 Single-ended device series inductance for stage 1 Single-ended device series inductance for stage 2 Single-ended device series inductance for stage 3 Single-ended device series inductance for stage 3	$\begin{array}{c} C_{d}^{(1)} \\ C_{d}^{(2)} \\ C_{d}^{(3)} \\ L_{s}^{(1)} \\ L_{s}^{(2)} \\ L_{s}^{(3)} \\ C_{b} \end{array}$	$\begin{array}{c} 40 \times 10^{-6} \\ 90 \times 10^{-6} \\ 110 \times 10^{-6} \\ 0.13 \\ 0.15 \\ 0.14 \\ 30 \times 10^{-6} \end{array}$	타 타 태 태 태 태 태	
Class A package model Transmission line parameter γ_0 Transmission line parameter a_1 Transmission line parameter a_2 Transmission line parameter τ Transmission line 1 length, Test 1 Transmission line 1 length, Test 2 Transmission line 1 characteristic impedance Transmission line 2 length Transmission line 2 length Transmission line 2 characteristic impedance Single-ended package capacitance at package-to-board interface	$\begin{array}{c} \gamma_{0} \\ a_{1} \\ a_{2} \\ \tau \\ z_{p} \\ (1) \\ z_{c} \\ z_{p} \\ z_{c} \\ z_{p} \\ z_{c} \\ z_{c}$	5×10^{-4} 8.9 × 10^{-4} 2 × 10^{-4} 6.141 × 10^{-4} 33 12 87.5 1.8 92.5 40 × 10^{-6}	1/mm ns ^{1/2} /mm 6.141e- μmμ mm Ω μmμ Ω nF	· <mark>3</mark>
Class B package model Transmission line parameter γ_0 Transmission line parameter a_1 Transmission line parameter a_2 Transmission line parameter r Transmission line 1 length, Test 1, Tx / Rx Transmission line 1 length, Test 2, Tx / Rx Transmission line 1 characteristic impedance Transmission line 2 length Transmission line 2 characteristic impedance Transmission line 3 characteristic impedance Transmission line 4 characteristic impedance Transmission line 4 characteristic impedance Transmission line 4 characteristic impedance Transmission line 4 characteristic impedance Single-ended package capacitance at package-to-board interface	$\begin{array}{c} \gamma_{0} \\ a_{1} \\ a_{2} \\ \tau \\ r_{2} \\ r_{p}(1) \\ r_{2} \\ r_{p}(1) \\ r_{2} \\ r_{p}(2) \\ r_{p}(2) \\ r_{p}(2) \\ r_{p}(3) \\ r_{p}(3) \\ r_{p}(3) \\ r_{p}(4) \\ r_{p}(4$	5×10^{-4} 6.5×10^{-4} 2.93×10^{-4} 6.141×10^{-4} $45 / 44$ $30 / 29$ 87.5 2 95 1.3 100 1.5 78 40×10^{-6}	1/mm ns ^{1/2} /mm 6.141e - nm Ω nm Ω nm Ω nm Ω nm	<mark>-3</mark>

Table 179-15-Device, package, and PCB model parameters

COM Configuration

• Simulator: COM 4.50beta3

Table 93A-1 parameters					I/O control			Operational		
Parameter	Setting	Units	Information	1	DIAGNOSTICS	0	logical	ERL Pass threshold	10	dB
f_b	106.25	GBd		1	DISPLAY_WINDOW	0	logical	COM Pass threshold	3	db
f_min	0.05	GHz		1	CSV_REPORT	0	logical	DER_0	2.00E-04	
Delta_f	0.01	GHz		1	RESULT_DIR	.\results\CRKR_{date}\		T_f	0.004	ns
C_d	[0.4e-4 0.9e-4 1.1e-4 ;0.4e-4 0.9e-4 1.1e-4]	nF	[TX RX]		SAVE_FIGURES	0	logical	FORCE_TR	1	logical
L_S	[0.13 0.15 0.14; 0.13 0.15 0.14]	nH	[TX RX]	1	Port Order	[1324]		PMD_type	C2C	
C_b	[0.3e-4 0.3e-4]	nF	[TX RX]		RUNTAG	KR_set1_eval_		EW	1	
R_0	50	Ohm		1	COM_CONTRIBUTION	1	logical	MLSE	0	logical
R_d	[50 50]	Ohm	[TX RX]	1				ts_anchor	1	
PKG_NAME	PKG_LowR_CLASSA_PKG_LowR_CLASSA		TX RX	1	TDR and ERL options			sample_adjustment	[-16 16]	
A_v	0.413	V			TDR	1	logical	Local Search	0	
A_fe	0.413	V			ERL	1	logical	Filter: Rx FFE		
A_ne	0.608	V		1	ERL_ONLY	0	ns	ffe_pre_tap_len	6	UI
z_p select	[12]				TR_TDR	0.01		ffe_post_tap_len	24	UI
L	4				N	7000	logical	ffe_pre_tap1_max	1	
M	32				TDR_Butterworth	1		ffe_post_tap1_max	1	
filter and Eq					beta_x	0		ffe_tapn_max	1	
f_r	0.58	*fb			rho_x	0.618		FFE_OPT_METHOD	MMSE	
c(0)	0.5		min		TDR_W_TXPKG	0	UI	num_ui_RXFF_noise	4096	
c(-1)	-0.34:0.02:0		[min:step:max]		N_bx	0		Floating Tap Control		
c(-2)	0:0.02:0.12		[min:step:max]		fixture delay time	[00]		N_bg	0	0 1 2 or 3 groups
c(-3)	0		[min:step:max]		Tukey_Window	1		N_bf	4	taps per group
c(1)	-0.2:0.02:0		[min:step:max]		Noise, jitter		UI	N_f	80	UI span for floating taps
N_b	1	UI			sigma_RJ	0.01	UI	bmaxg	1	max DFE value for floating taps
b_max(1)	0.75		As/dffe1		A_DD	0.02	V^2/GHz	B_float_RSS_MAX	1	rss tail tap limit
b_max(2N_b)	0		As/dfe2N_b	1	eta_0	6.00E-09	dB	N_tail_start	25	(UI) start of tail taps limit
b_min(1)	0		As/dffe1		SNR_TX	33		RXFFE FLOAT CTL	FOM	
b_min(2N_b)	0	S	As/dfe2N_b		R_LM	0.95				
g_DC	0	dB	[min:step:max]							
f_z	42.5	GHz								
f_p1	42.5	GHz		1						
f_p2	106.25	GHz								
g_DC_HP	[-6:1:0]		[min:step:max]							
f_HP_PZ	1.328125	GHz		1						
Butterworth	1	logical	include in fr							

* Was 0.45 in <u>lit_3dj_01a_2403</u>

COM vs RX FFE Fixed-Tap Length

- For this set of data, d_w = 6 and MLSE = 0
- Short/reflective channels can comfortably exceed COM of 3dB with increasing number of taps
- Increasing N_fix to 60 or 120 doesn't make 40dB loss channels pass

* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= 40dB

COM vs RX FFE Floating-Tap Length

- For this set of data, d_w = 6, N_fix = 24, N_f = 4, and MLSE = 0
- Floating taps can provide higher flexibility and can use a fewer taps to achieve comparable performance as long FFE fixed taps

* Pass criteria: COM >= 3dB & Channel bump-to-bump IL <= 40dB

COM with MLSE Enabled

- For this set of data, d_w = 6, N_g = 0, and MLSE = 1
- Most of the channels can meet 3 dB COM by using MLSE + short FFE fixed taps
 - MLSE has proven to be successful in compensating additional loss due to higher Nyquist frequency
 - In real world, MLSE gain for 40dB channels is a little over 1dB → MLSE penalty ~1dB

 Pass criteria: COM >= 3dB (or 4dB) & Channel bump-to-bump IL <= 40dB

Choosing An Optimum Reference Receiver

	d_w	N_fix	N_g*N_f	N_max	MLSE	COM Pass Ratio	EQ Power
FFE Fixed Tap Only	6	60	0	-	0	75%	High
FFE Fixed Taps + Floating Taps	6	24	2*4	80	0	74%	Low (If small N_g)
FFE Fixed Taps + MLSE	6	16	0	-	1	96% for COM >= 3dB 82% for COM >= 4dB	Low

- Further increasing number of taps seems less helpful in link budget expansion
- Most of the outlier channels are with either lower ICR or relatively low channel ERL, see <u>Appendix</u>
- Suggest using short FFE fixed taps together with
 - A few floating groups or MLSE

0	$N_{fix} = 60, N_g = 0, MLSE Off$
0	$N_{fix} = 24$, $N_g = 2$, MLSE Off
0	$N_fix = 16$, $N_g = 0$, MLSE On

Proposal: Option A

- Ref RX: RxFFE fixed taps + MLSE
- Proposed COM parameter values to Table 178– 13 and Table 179-16

Parameter	Symbol	Value	Units		
Random jitter, RMS	σ _{RJ}	TBD	UI		
Dual-Dirac jitter, peak	A_{DD}	TBD	UI		
Level separation mismatch ratio	R _{LM}	<mark>0.95</mark>	_		
Number of samples per unit interval	М	<mark>32</mark>	_		
Receiver discrete-time equalizer parameters Number of pre-cursor taps Number of fixed-position taps Number of floating tap groups Number of taps per floating tap group Highest allowed tap index Normalized upper limit on feed-forward coefficient <i>w</i> (<i>j</i>) Normalized lower limit on feed-forward coefficient <i>w</i> (<i>j</i>) Number of feedback taps Normalized upper limit on feedback coefficient b(j) Normalized lower limit on feedback coefficient b(j)	$\begin{array}{c} d_w \\ N_{fix} \\ N_g \\ N_{max} \\ W_{max}(l) \\ w_{min}(l) \\ \end{array}$	6 16 0 IBD IBD IBD 1 0.75 0			
Target detector error ratio	DER ₀	2 × 10 ⁻⁴	—		
Additionally, set MLSE = 1 MLSE penalty shall be considered					

* Proposed for COM parameters only, not for TX training

Parameter	Symbol	Value	Units
Signaling rate	f_b	106.25	GBd
Maximum start frequency	f_{\min}	0.05	GHz
Maximum frequency step	Δf	0.01	GHz
Receiver 3 dB bandwidth	f_r	0.58*fb ^	62GHz
Transmitter equalizer, coefficient –3 Minimum value Maximum value Step size	c(-3)	Remove	it* _
Transmitter equalizer, coefficient –2 Minimum value Maximum value Step size	c(-2)	<mark>0:0.02:0.</mark> :	1 <mark>2</mark> _
Transmitter equalizer, coefficient –1 Minimum value Maximum value Step size	c(-1)	<mark>-0.34:0.0</mark> 2	<mark>2:0</mark>
Transmitter equalizer, coefficient 0 Minimum value	c(0)	<mark>0.5</mark>	—
Transmitter equalizer, coefficient 1 Minimum value Maximum value Step size	c(1)	-0.2:0.02:	<mark>0</mark> _
Continuous time filter, gain 1 Minimum value Maximum value Step size	<i>g</i> 1	-20 0 1	dB dB dB
Continuous time filter, gain 2 Minimum value Maximum value Step size	8 2	6 0 1	dB dB dB
Continuous time filter, zero 1 frequency for $g_1=0$ Continuous time filter, zero 1 frequency for $g_2=0$	$f_{z1} \\ f_{z2}$	f _b / 2.5 f _b / 80	GHz GHz
Continuous time filter, pole 1 frequency Continuous time filter, pole 2 frequency Continuous time filter, pole 3 frequency	$f_{p1} \\ f_{p2} \\ f_{p3}$	f _b / 2.5 f _b f _b / 80	GHz GHz GHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	$egin{array}{c} A_v \ A_{fe} \ A_{ne} \end{array}$	0.413 0.413 0.608	V V V
Transmitter transition time	T _r	0.004	ns
Number of signal levels	L	4	_
One-sided noise spectral density	η	<mark>6e-9</mark>	V ² /GHz
Transmitter signal-to-noise ratio	SNR _{TX}	<mark> 33</mark>	dB

Proposal: Option B

- Ref RX: RxFFE fixed taps + floating taps
- Proposed COM parameter values to Table 178– 13 and Table 179-16

Parameter	Symbol	Value	Units
Random jitter, RMS	σ _{RJ}	TBD	UI
Dual-Dirac jitter, peak	A _{DD}	TBD	UI
Level separation mismatch ratio	R _{LM}	<mark>0.95</mark>	—
Number of samples per unit interval	М	32	_
Receiver discrete-time equalizer parameters Number of pre-cursor taps Number of fixed-position taps Number of floating tap groups Number of taps per floating tap group Highest allowed tap index Normalized upper limit on feed-forward coefficient <i>w(j)</i> Normalized lower limit on feed-forward coefficient <i>w(j)</i> Number of feedback taps Normalized upper limit on feedback coefficient b(j) Normalized lower limit on feedback coefficient b(j)	$d_w = N_{ftx} = N_f = N_h = $	6 24 2 4 65 IBD 1 0.75 0	
Target detector error ratio	DER ₀	2 × 10 ⁻⁴	—
	<mark>Additi</mark>	onally, set	MLSE = 0

* Proposed for COM parameters only, not for TX training

Parameter	Symbol	Value	Units
Signaling rate	f_b	106.25	GBd
Maximum start frequency	f_{\min}	0.05	GHz
Maximum frequency step	Δf	0.01	GHz
Receiver 3 dB bandwidth	f_r	0.58*fb	<mark>62GHz</mark>
Transmitter equalizer, coefficient –3 Minimum value Maximum value Step size	c(-3)	Remove	<mark>it*</mark>
Transmitter equalizer, coefficient –2 Minimum value Maximum value Step size	c(-2)	<mark>0:0.02:0.</mark> :	12
Transmitter equalizer, coefficient –1 Minimum value Maximum value Step size	c(-1)	- <mark>0.34:0.0</mark> 2	<mark>2:0</mark>
Transmitter equalizer, coefficient 0 Minimum value	<i>c</i> (0)	<mark>0.5</mark>	—
Transmitter equalizer, coefficient 1 Minimum value Maximum value Step size	c(1)	<mark>-0.2:0.02</mark> :	<mark>0</mark>
Continuous time filter, gain 1 Minimum value Maximum value Step size	<i>g</i> ₁	-20 0 1	dB dB dB
Continuous time filter, gain 2 Minimum value Maximum value Step size	g 2	6 0 1	dB dB dB
Continuous time filter, zero 1 frequency for $g_1=0$ Continuous time filter, zero 1 frequency for $g_2=0$	$f_{z1} \\ f_{z2}$	f _b / 2.5 f _b / 80	GHz GHz
Continuous time filter, pole 1 frequency Continuous time filter, pole 2 frequency Continuous time filter, pole 3 frequency	$\stackrel{f_{p1}}{\stackrel{f_{p2}}{\stackrel{f_{p3}}{\int_{p3}}}$	f _b / 2.5 f _b f _b / 80	GHz GHz GHz
Transmitter differential peak output voltage Victim Far-end aggressor Near-end aggressor	$egin{array}{c} A_v \ A_{fe} \ A_{ne} \end{array}$	0.413 0.413 0.608	V V V
Transmitter transition time	T _r	0.004	ns
Number of signal levels	L	4	—
One-sided noise spectral density	η ₀	<mark>6e-9</mark>	V ² /GHz
Transmitter signal-to-noise ratio	SNR _{TX}	<mark> 33</mark>	dB

Channel Characteristics vs COM

- Ref RX: RxFFE fixed taps only
- ERL and ICR are used for relative comparison, not a baseline proposal

Symbol	Value	Units
T _r	0.01	ns
β_x	0	GHz
ρ_{χ}	0.618	
N	7000	UI
N _{bx}	60	UI
T _{fx}	0	ns
ťw	1	—

Channel Characteristics vs COM

- Ref RX: RxFFE fixed taps + floating taps
- ERL and ICR are used for relative comparison, not a baseline proposal

	d_w	N_fix	N_g*N_f	N_max	MLSE	COM Pass Ratio
FFE Fixed Tap + Floating Tap	6	24	2*4	80	0	74%

Symbol	Value	Units
T_r	0.01	ns
β_x	0	GHz
ρ_x	0.618	_
N	7000	UI
N _{bx}	32	UI
T _{fx}	0	ns
tw	1	—

Channel Characteristics vs COM

Ref RX: RxFFE fixed taps + MLSE •

MLSE (dB)

COM,

ERL and ICR are used for relative • comparison, not a baseline proposal

Bump-to-Bump IL (dB)

ERL < 16.6

ICR < 20

ERL Parameters

Symbol	Value	Units
T _r	0.01	ns
β_x	0	GHz
ρ_{χ}	0.618	_
N	7000	UI
N _{bx}	16	UI
T _{fx}	0	ns
tw	1	_

	d_w	N_fix	N_g*N_f	N_max	MLSE	COM Pass Ratio
FE Fixed Tap + MLSE	6	16	0	-	1	96% for COM >= 3dB 82% for COM >= 4dB

Thank you Questions and Discussions